期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2021年 第23卷 第3期 doi: 10.15302/J-SSCAE-2021.03.009

循环流化床燃烧低污染排放技术研究展望

1. 清华大学能源与动力工程系,北京 100084;

2. 热科学与动力工程教育部重点实验室,北京 100084

收稿日期 :2021-01-11 修回日期 :2021-03-21 发布日期 :2021-06-01

下一篇 上一篇

摘要

在污染物排放标准日趋严格、 2060 年前实现碳中和的背景下,深度挖掘循环流化床(CFB)燃烧技术的低污染排放潜力,进一步提高 CFB 锅炉的市场竞争力,对于煤炭清洁高效利用、能源转型升级具有重要意义。本文在阐述 CFB 燃烧污染物排放特性的基础上,分析了主流 CFB 锅炉低污染排放技术及应用,结合我国能源发展战略和相关政策,提出了 CFB 燃烧在污染物排放控制技术方面的发展建议。研究认为,需大力开发炉内原始低排放 CFB 燃烧技术,在保证锅炉效率的前提下,通过流态重构、燃烧组织来突破 CFB 锅炉污染物排放极限。着眼于煤炭能源长远发展,支持与超临界 / 超超临界,智能运行,碳捕集、利用与封存,储能等技术高度结合的新一代超低排放 CFB 燃烧技术研发;加快对现存中小容量 CFB 锅炉的优化升级;发挥 CFB 燃烧燃料适应性广的优势,推广生物质燃烧发电,促进对低热值燃料、城市垃圾、各工业废弃物的低成本高效清洁消纳;挖掘 CFB 锅炉的深度调峰能力并保持低污染排放性能,提高运行灵活性及对新能源的消纳能力;加强 CFB 燃烧脱硫灰渣的综合利用,关注 N2O 排放问题。还需从全局角度合理制定污染物排放标准和相关政策,引导包括 CFB 燃烧在内的能源行业健康发展。

图片

图 1

图 2

参考文献

[1]  国家统计局. 中国统计年鉴—2020 [M]. 北京: 中国统计出版社, 2020. National Bureau of Statistics of China. China statistical yearbook–2020 [M]. Beijing: China Statistics Press, 2020.

[2]  BP Group. BP statistical review of world energy 2020 [R]. London: BP Group, 2020.

[3]  孙旭东, 张博, 彭苏萍. 我国洁净煤技术2035发展趋势与战略对 策研究 [J]. 中国工程科学, 2020, 22(3): 132–140. Sun X D, Zhang B, Peng S P. Development trend and strategic countermeasures of clean coal technology in China toward 2035 [J]. Strategic Study of CAE, 2020, 22(3): 132–140. 链接1

[4]  Lyu J F, Yang H R, Ling W, et al. Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler [J]. Frontiers in Energy, 2017, 13(1): 114–119. 链接1

[5]  Huang Z, Deng L, Che D F. Development and technical progress in large-scale circulating fluidized bed boiler in China [J]. Frontiers in Energy, 2020, 14(4): 699–714.

[6]  Leckner B. Fluidized bed combustion: Mixing and pollutant limitation [J]. Progress in Energy and Combustion Science, 1998, 24(1): 31–61. 链接1

[7]  Johnsson J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion [J]. Fuel, 1994, 73(9): 1398–1415. 链接1

[8]  柯希玮, 蔡润夏, 吕俊复, 等. 钙基脱硫剂对循环流化床NOx排放 影响研究进展 [J]. 洁净煤技术, 2019, 25(1): 1–11. Ke X W, Cai R X, Lyu J F, et al. Research progress of the effects of Ca-based sorbents on the NOx reaction in circulating fluidized bed boilers [J]. Clean Coal Technology, 2019, 25(1): 1–11. 链接1

[9]  周浩生, 陆继东, 周琥. 燃煤流化床加入氧化钙的氮转化机理 [J]. 工程热物理学报, 2000, 21(5): 647–651. Zhou H S, Lu J D, Zhou H. Nitrogen conversion in fluidized bed combustion of coal with limestone addition [J]. Journal of Engineering Thermophysics, 2000, 21(5): 647–651. 链接1

[10]  Ke X W, Li D F, Li Y R, et al. 1-dimensional modelling of in-situ desulphurization performance of a 550 MWe ultra-supercritical CFB boiler [J]. Fuel, 2021, 290(1): 1–12. 链接1

[11]  Ke X W, Cai R X, Zhang M, et al. Application of ultra-low NOx emission control for CFB boilers based on theoretical analysis and industrial practices [J]. Fuel Processing Technology, 2018, 181(1): 252–258. 链接1

[12]  Cai R, Ke X W, Huang Y, et al. Applications of ultrafine limestone sorbents for the desulfurization process in CFB boilers [J]. Environental Science and Technology, 2019, 53(22): 13514– 13523. 链接1

[13]  张缦, 张素花, 郭学茂, 等. 流态对CFB燃烧气体污染物排放的 影响及其应用 [J]. 工业锅炉, 2020 (3): 11–17. Zhang M, Zhang S H, Guo X M, et al. The effect and application of solid-gas two-phase flow pattern on the emission in the circulating fluidized bed combustion [J]. Industrial Boilers, 2020 (3): 11–17. 链接1

[14]  程晓磊. 低氮燃烧及炉内脱硫技术在75 t/h循环流化床锅炉上 的应用 [J]. 工业锅炉, 2018 (5): 28–31. Cheng X L. Application of low-NOx combustion technology and desulphurization technology on 75 t/h circulating fluidized bed boiler [J]. Industrial Boilers, 2018 (5): 28–31. 链接1

[15]  张思海, 张双铭, 张俊杰, 等. 330 MW亚临界CFB锅炉烟气 再循环深度调峰运行性能研究 [J]. 洁净煤技术, 2021, 27(1): 291–298. Zhang S H, Zhang S M, Zhang J J, et al. Performance research on deep peak regulation with flue gas recirculation in a 330 MW CFB boiler [J]. Clean Coal Technology, 2021, 27(1): 291–298. 链接1

[16]  李博, 赵锦洋, 吕俊复. 燃煤烟气超低排放技术路线选择建议 [J]. 电力科技与环保, 2016, 32(5): 13–15. Li B, Zhao J Y, Lyu J F. Suggestions on the ultra-low emission technical routes of coal-fired flue gas [J]. Electric Power Technology and Environmental Protection, 2016, 32(5): 13–15. 链接1

[17]  杜玉颖, 孙永斌, 詹扬, 等. 燃煤电站超低排放控制技术设计方 法与图谱 [J]. 环境工程, 2018, 36(3): 92–97. Du Y Y, Sun Y B, Zhan Y, et al. Design method and map of ultralow emission control technology for coal-fired power plants [J]. Environmental Engineering, 2018, 36(3): 92–97. 链接1

[18]  Shimizu T, Satoh M, Fujikawa T, et al. Simultaneous reduction of SO2, NOx and N2O emissions from a two-stage bubbling fluidized bed combustor [J]. Energy Fuels, 2000, 14(4): 862–868. 链接1

[19]  Zhang Y, Zhu J G, Lyu Q G, et al. The ultra-low NOx emission characteristics of pulverized coal combustion after high temperature preheating [J]. Fuel, 2020, 277(1): 1–12. 链接1

[20]  中华人民共和国国家质量监督检验检疫总局, 中国国家标准 化管理委员会. 用于水泥和混凝土中的粉煤灰 (GB/T 1596— 2017) [S]. 北京: 中国质量标准出版传媒有限公司, 2018. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. Fly ash used for cement and concrete (GB/T 1596—2017) [S]. Beijing: China Quality and Standards Publishing & Media Co., Ltd., 2018.

[21]  Kramlich J C, Linak W P. Nitrous oxide behavior in the atmosphere, and in combustion and industrial systems [J]. Progress in Energy and Combustion Science, 1994, 20(2): 149–202. 链接1

[22]  The International Renewable Energy Agency. Renewable energy statistics 2020 [R]. Abu Dhabi: The International Renewable Energy Agency, 2020.

[23]  于浩洋, 高明明, 张缦, 等. 循环流化床机组深度调峰性能分析 与评价 [J]. 热力发电, 2020, 49(5): 65–72. Yu H Y, Gao M M, Zhang M, et al. Performance analysis and evaluation of deep peak-regulating for circulating fluidized bed units [J]. Thermal Power Generation, 2020, 49(5): 65–72. 链接1

[24]  蔡晋, 单露, 王志宁, 等. 超临界350 MW循环流化床锅炉变负荷 特性 [J]. 热力发电, 2020, 49(9): 98–103. Cai J, Shan L, Wang Z N, et al. Variable load characteristics of a supercritical 350 MW circulating fluidized bed boiler [J]. Thermal Power Generation, 2020, 49(9): 98–103. 链接1

[25]  杜佳军, 张鹏, 韩新建. 循环流化床机组环保参数异常原因分析 与对策 [J]. 洁净煤技术, 2020, 26(6): 237–242. Du J J, Zhang P, Han X J. Cause analysis and countermeasure research on environmental protection parameter abnormity of CFB unit [J]. Clean Coal Technology, 2020, 26(6): 237–242. 链接1

[26]  柯希玮, 张缦, 杨海瑞, 等. 循环流化床锅炉NOx生成和排放特性 研究进展 [J]. 中国电机工程学报, 2021, 41(8): 2757–2771. Ke X W, Zhang M, Yang H R, et al. Research progress on the characteristics of NOx emission in circulating fluidized bed boiler [J]. Proceedings of the CSEE, 2021, 41(8): 2757–2771. 链接1

[27]  李博, 王卫良, 姚宣, 等. 煤电减排对中国大气污染物排放控制 的影响研究 [J]. 中国电力, 2019, 52(1): 110–117. Li B, Wang W L, Yao X, et al. Study on the effects of emission reduction in coal-fired power industry on china’s air pollutant emission control [J]. Electric Power, 2019, 52(1): 110–117. 链接1

相关研究