期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2021年 第23卷 第4期 doi: 10.15302/J-SSCAE-2021.04.020

南海富碳天然气直接利用技术发展研究

1. 中国海洋石油集团有限公司科技信息部,北京 100010;

2. 浙江工业大学生物工程学院,杭州 310014;

3. 北京化工大学化学工程学院,北京 100029
 

资助项目 :中国工程院咨询项目“绿色海洋化工发展战略研究” (2020-XY-09) 收稿日期: 2021-02-21 修回日期: 2021-03-29 发布日期: 2021-07-26

下一篇 上一篇

摘要

我国南海富碳天然气具有 CO2 含量高的特点,高效开发和精准利用南海富碳天然气资源,有助于积极应对气候变化,实现“碳达峰、碳中和”目标。本文分析了南海富碳天然气直接利用的需求和价值,概括了富碳天然气直接利用的发展现状;重点论述了富碳天然气 CO2-CH4 干重整技术、富碳天然气制甲醇一体化技术、富碳天然气 CO2 加氢制液体燃料技术、富碳天然气直接制精细化工品技术等的实施过程与应用特征。研究建议,南海富碳天然气资源有其特殊性,应加强研究并实施重点攻关,建立海洋富碳天然气综合利用技术工程化平台,与非化石能源风能、太阳能及核能紧密融合发展,推进南海富碳天然气产业的可持续发展;针对性布局南海富碳天然气产业,加强富碳天然气的开发与利用力度,尽快实现转型升级;建立“产学研用”战略联盟,保障产业与技术合作需求。

图片

图 1

图 2

图 3

图 4

图 5

参考文献

[ 1 ] Wu Q. Study on the technology clusters for direct utilization of carbon-rich natural gas and construction of hybrid system for energy and chemicals production [J]. China Petroleum Processing & Petrochemical Technology, 2020, 22(2): 1–9. 链接1

[ 2 ] 付彧, 孙予罕. CH4-CO2重整技术的挑战与展望 [J]. 中国科学: 化学, 2020, 50(7): 816–831. Fu Y, Sun Y H. CH4-CO2 reforming: Challenges and outlook [J]. SCIENTIA SINICA Chimica, 2020, 50(7): 816–831. 链接1

[ 3 ] 赵绍民, 王磊, 邵立红. 合成气成分对甲醇合成生产的影响 [J]. 煤化工, 2003, 31(2): 41–44. Zhao S M, Wang L, Shao L H. Effect of synthesis gas compositions on the methanol production [J]. Coal Chemical Industry, 2003, 31(2): 41–44. 链接1

[ 4 ] 高鹏, 崔勖, 钟良枢, 等. CO/CO2加氢高选择性合成化学品和液 体燃料 [J]. 化工进展, 2019, 38(1): 183–195. Gao P, Cui X, Zhong L S, et al. CO/CO2 hydrogenation to chemicals and liquid fuels with high selectivity [J]. Chemical Industry and Engineering Process, 2019, 38 (1): 183–195. 链接1

[ 5 ] Chen Q Q, Wang D F, Gu Y, et al. Techno-economic evaluation of CO2-rich natural gas dry reforming for linear alpha olefins production [J]. Energy Conversion and Management, 2020, 205: 1–12. 链接1

[ 6 ] Li S Q, Fu Y, Kong W B, et al. Dually confined Ni nanoparticles by room-temperature degradation of AlN for dry reforming of methane [J]. Applied Catalysis B: Environmental, 2020, 277: 1–12. 链接1

[ 7 ] Zhang S P, Li D L, Liu Y, et al. Zirconium doped precipitated Fe-based catalyst for fischer-tropsch synthesis to light olefins at industrially relevant conditions [J]. Catalysis Letter, 2019, 149: 1486–1495. 链接1

[ 8 ] Lu F X, Chen X, Wen L X, et al. The synergic effects of iron carbides on conversion of syngas to alkene [J]. Catalysis Letters, 2021, 151: 2132–2143. 链接1

[ 9 ] Khodakov A Y, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels [J]. Chemical Reviews, 2007, 107(5): 1692–1744. 链接1

[10] Cai F F, Ibrahim J J, Fu Y, et al. Low-temperature hydrogen production from methanol steam reforming on Zn-modified Pt/MoC catalysts [J]. Applied Catalysis B: Environmental, 2020, 264: 1–12. 链接1

[11] Chai Y J, Fu Y, Feng H, et al. A nickel-based perovskite catalyst with a bimodal size distribution of nickel particles for dry reforming of methane [J]. ChemCateChem, 2018, 10(9): 2078–2086. 链接1

[12] Wang C Z, Sun N N, Kang M, et al. The bi-functional mechanism of CH4 dry reforming over a Ni-CaO-ZrO2 catalyst: Further evidence via the identification of the active sites and kinetic studies [J]. Catalysis Science & Technology, 2013 3(9): 2435–2433. 链接1

[13] Guczi L, Erdohelyi A. Catalysis for alternative energy generation [M]. New York: Springer Science Business Media, 2012.

[14] Wang Y, Yao L, Wang Y N, et al. Low-temperature catalytic CO2 dry reforming of methane on Ni-Si/ZrO2 catalyst [J]. ACS Catalysis, 2018, 8(7): 6495–6506. 链接1

[15] Liu Z Y, Grinter D C, Lustemberg P G, et al. Dry reforming of methane on a highly-active Ni-CeO2 catalyst: Effects of metal-support interactions on C-H bond breaking [J]. Angewandte Chemie International Edition, 2016, 55(26): 7455–7459. 链接1

[16] Liu Z X, Zhou X, Miao Y, et al. A reversible fluorescent probe for real-time quantitative monitoring of cellular glutathione [J]. Angewandte Chemie International Edition, 2017, 56(21): 5812–5816. 链接1

[17] Jang W J, Jeong D W, Shim J O, et al. Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application [J]. Applied Energy, 2016, 173: 80–91. 链接1

[18] Palmer C, Upham D C, Smart S, et al. Dry reforming of methane catalysed by molten metal alloys [J]. Nature Catalysis, 2020 (3): 83–89. 链接1

[19] Song Y D, Ozdemir E, Ramesh S, et al. Response to comment on “Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO” [J]. Science, 2020, 368(6492): 777–781.

[20] Oemar U, Kathiraser Y, Mo L, et al. CO2 reforming of methane over highly active la-promoted Ni supported on SBA-15 catalysts: Mechanism and kinetic modelling [J]. Catalysis Science & Technology, 2016, 6(4): 1173–1186. 链接1

[21] Buelens L C, Galvita V V, Poelman1 H, et al. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle [J]. Science, 2016, 354(6311): 449–452. 链接1

[22] Wang C , Guan E, Wang L, et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation [J]. Journal of the American Chemical Society, 2019, 141(21): 8482–8488. 链接1

[23] Zhang J, Wang L, Zhang B, et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth [J]. Nature Catalysis, 2018, 1: 540–560. 链接1

[24] Gao P, Li S G, Bu X N, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst [J]. Nature Chemistry, 2017, 9(10): 1019–1024. 链接1

[25] 陈倩倩, 顾宇, 唐志永, 等. 以二氧化碳规模化利用技术为核心 的碳减排方案 [J]. 中国科学院院刊, 2019, 34(4): 478–487. Chen Q Q, Gu Y, Tang Z Y, et al. Carbon dioxide sizable utilization technology based carbon reduction solutions [J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(4): 478–487. 链接1

[26] Zhong L S, Yu F, An Y L, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas [J]. Nature, 2016, 538(7623): 84–87. 链接1

[27] 吴青, 鹿晓斌, 曲顺利, 等. 一种利用富碳天然气进行羰基合 成的方法 : CN111704533A [P/OL]. (2020-09-25)[2021-03-15]. http://pss-system.cnipa.gov.cn/sipopublicsearch/patentsearch/ showViewList-jumpToView.shtml. Wu Q, Lu X B, Qu S L, et al. Method for oxo synthesis using carbon-rich natural gas: CN111704533A [P/OL]. (2020-09-25) [2021-01-15]. http://pss-system.cnipa.gov.cn/sipopublicsearch/ patentsearch/showViewList-jumpToView.shtml. 链接1

[28] 吴青, 鹿晓斌, 曲顺利, 等. 一种富碳天然气制备合成气的制备 系统及制备方法: CN111348622A [P/OL]. 2020-06-30 [2021-01- 15]. http://pss-system.cnipa.gov.cn/sipopublicsearch/patentsearch/ searchHomeIndex-searchHomeIndex.shtml. Wu Q, Lu X B, Qu S L, et al. Preparation system and preparation method for preparing synthesis gas from carbon-rich natural gas: CN111348622A [P/OL]. 2020-06-30 [2021-01-15]. http://pss-system.cnipa.gov.cn/sipopublicsearch/patentsearch/searchHomeIndex-searchHomeIndex.shtml. 链接1

相关研究