期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2022年 第24卷 第3期 doi: 10.15302/J-SSCAE-2022.03.015

氢气分离膜研究进展

1. 国家能源集团神华鄂尔多斯煤制油分公司,内蒙古鄂尔多斯 017209;

2. 国华能源投资有限公司,北京 100007;

3. 北京低碳清洁能源研究院,北京 102211;

4. 国家有色金属新能源材料与制品工程技术研究中心,北京 100088;

5. 有研工程技术研究院有限公司,北京 101407

资助项目 :国家重点研发计划项目(2019YFB1505000);中国工程院咨询项目“中国氢能源与燃料电池发展战略研究”(2019-ZD-03) 收稿日期: 2022-03-25 修回日期: 2022-05-17 发布日期: 2022-06-23

下一篇 上一篇

摘要

氢气是重要的工业原料和清洁燃料,氢气分离具有重要的经济和社会价值;膜分离法装置结构简单、转换高效、投资成本低且环境友好,在氢气分离领域应用前景广阔;氢气分离膜的性能是影响氢气分离过程效率的决定性因素,因而氢气分离膜技术研究一直是国内外膜领域的热点方向。本文阐述了氢气分离膜的应用需求、基本机理,系统梳理了致密金属膜、无机多孔膜、金属‒ 有机框架(MOF)膜、有机聚合物膜、混合基质膜的研究进展。研究发现,尽管无机多孔膜、有机聚合物膜、混合基质膜等具有良好的氢气分离纯化性能,但在分布式、小型化的应用场景下的分离性能仍待改进提高;提高钯基金属膜的抗毒化性能、优化膜的性价比,是促进工业应用的有效手段;整合无机多孔膜、MOF膜的优点,可促进分子筛分机制膜的性能跃升;有机聚合物膜的耐温、机械等性能仍需提高;对现有高分子膜材料进行改性、制备高分子合金,是开发新型气体分离膜的重要方向;混合基质膜在进行可控调节排布后,将显著提高膜性能。多种氢气分离膜的研究和应用,支撑了氢气分离纯化过程的发展,在材料种类丰富、制备工艺进步后将发挥更大的工程价值。

图片

图1

图2

图3

图4

参考文献

[ 1 ] 中国氢能联盟 . 中国氢能源及燃料电池产业白皮书2020 [R]. 北京 : 中国氢能联盟 , 2021 .

[ 2 ] Du Z M, Liu C M, Zhai J X, et al. A review of hydrogen purification technologies for fuel cell vehicles [J]. Catalyst, 2021,11(3): 1‒19.

[ 3 ] Park Y, Kang J H, Moon D K, et al. Parallel and series multi-bed pressure swing adsorption processes for H2 recovery from a lean hydrogen mixture [J]. Chemical Engineering Journal, 2021, 408: 1‒15.

[ 4 ] Abdeljaoued A, Relvasc F, Mendesc A, et al. Simulation and experimental results of a PSA process for production of hydrogen used in fuel cells [J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 338‒355.

[ 5 ] Sazali N, Mohamed M A, Salleh W N W. Membranes for hydrogen separation: A significant review [J]. The International Journal of Advanced Manufacturing Technology, 2020, 107: 1859‒1881.

[ 6 ] Saini N, Awasthi K. Insights into the progress of polymeric nano-composite membranes for hydrogen separation and purification in the direction of sustainable energy resources [J]. Separation and Purification Technology, 2022, 282: 1‒15.

[ 7 ] Barelli L, Bidini G, Gallorini F, et al. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review [J]. Energy, 2008, 33(4): 554‒570.

[ 8 ] Minchener A J. Coal gasification for advanced power generation [J]. Fuel, 2005, 84(17): 2222‒2235.

[ 9 ] Adhikari S, Fernando S D. Hydrogen membrane separation techniques [J]. Industrial & Engineering Chemistry Research, 2006, 45(3): 875‒881.

[10] Li P Y, Wang Z, Qiao Z H, et al. Recent developments in membranes for efficient hydrogen purification [J]. Journal of Membrane Science, 2015, 495: 130‒168.

[11] Gruener S, Huber P. Knudsen diffusion in silicon nanochannels [J]. Physical Review Letters, 2008, 100: 1‒15.

[12] 恽正中 , 王恩信 , 完利祥 . 表面与界面物理 [M]. 成都 : 电子科技大学出版社 , 1993 .

[13] 时钧 , 袁权 , 高从堦 . 膜技术手册 [M]. 北京 : 化学工业出版社 , 2000 .

[14] Li S C, Wang Z, Yu X W, et al. High-performance membranes with multi-permselectivity for CO2 separation [J]. Advanced Materials, 2012, 24(24): 3196‒3200.

[15] Wu W H, Yang Q, Su B. Centimeter-scale continuous silica isoporous membranes for molecular sieving [J]. Journal of Membrane Science, 2018, 558: 86‒93.

[16] Javaid A. Membranes for solubility-based gas separation applications [J]. Chemical Engineering Journal, 2005, 112(1‒3): 219‒226.

[17] Li Y F, Wang S F, He G W, et al. Facilitated transport of small molecules and ions for energy-efficient membranes [J]. Chemical Society Reviews, 2015, 44(1): 103‒118.

[18] Hatlevik O, Gade S K, Keeling M K, et al. Palladium and palladium alloy membranes for hydrogen separation and production: History, fabrication strategies, and current performance [J]. Separation and Purification Technology, 2010, 73(1): 59‒64.

[19] Lewis F A. The palladium-hydrogen system [M]. London: Academic Press, 1967.

[20] Wipf F. Solubility and diffusion of hydrogen in pure metals and alloy [J]. Physica Scripta, 2001, 94: 43‒51.

[21] Siriwardane R V, Poston J A, Fisher E P, et al. Characterization of ceramic hydrogen separation membranes [J]. Applied Surface Science, 2000, 167(1‒2): 34‒50.

[22] Yun S H, Oyama S T. Correlations in palladium membranes for hydrogen separation: A review [J]. Journal of Membrane Science, 2011, 375(1‒2): 28‒45.

[23] Phair J, Donelson R. Developments and design of novel(non-palladium-based) metal membranes for hydrogen separation [J]. Industrial & Engineering Chemistry Research, 2006, 45(16): 5657‒5674.

[24] Buxbaum R E, Marker T L. Hydrogen transport through non-porous membranes of palladium-coated niobium, tantalum and vanadium [J]. Journal of Membrane Science, 1993, 85(1): 29‒38.

[25] Mundschau M V. Hydrongen transport membranes: US6899744 B2 [P]. 2005.

[26] Roark S E, Mackay R, Mundschau M V. Dense, layered membranes for hydrogen separation: US7001446 B2 [P]. 2006.

[27] Holleck G L. Diffusion and solubility of hydrogen in palladium and palladium-silver alloys [J]. The Journal of Physical Chemistry, 1970, 74: 503‒511.

[28] Buxbaum R E. Composite metal membrane for hydrogen extraction: US5215729 A [P]. 1993.

[29] Jemaa N, Shu J, Kaliaguine S, et al. Thin palladium film formation on shot peening modified porous stainless steel substrates [J]. Industrial & Engineering Chemistry Research, 1996, 35(3): 973‒977.

[30] Edlund D J, Pledger W A. Catalytic platinum-based membrane reactor for removal of H2S from natural gas streams [J]. Journal of Membrane Science, 1994, 94(1): 111‒119 .

[31] Amandusson H, Ekedahl L G, Dannetun H. The effect of CO and O2 on hydrogen permeation through a palladium membrane [J]. Applied Surface Science, 2000, 153(4): 259‒267.

[32] Li A, Liang W, Hughes R. The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane [J]. Journal of Membrane Science, 2000, 165(1): 135‒141.

[33] Bryden K J, Ying J Y. Nanostructured palladium-iron membranes for hydrogen separation and membrane hydrogenation reactions [J]. Journal of Membrane Science, 2002, 203(1‒2): 29‒42.

[34] Qiao A L, Zhang K, Tian Y, et al. Hydrogen separation through palladium-copper membranes on porous stainless steel with sol-gel derived ceria as diffusion barrier [J]. Fuel, 2010, 89(6): 1274‒1279.

[35] Uemiya S, Endo T, Yoshiie R, et al. Fabrication of thin palladium-silver alloy film by using electroplating technique [J]. Materials Transactions, 2007, 48(5): 1119‒1123.

[36] Shigeyuki U, Yukinori Y, Kohzoh S, et al. A palladium/porous-glass composite membrane for hydrogen separation [J]. Chemistry Letters, 1988, 17(10): 1687‒1690.

[37] Altinisik O, Dogan M, Dogu G. Preparation and characterization of Pd-plated porous glass for hydrogen enrichment [J]. Catalysis Today, 2005, 105(3‒4): 641‒646.

[38] Xomeritakis G, Lin Y S. CVD synthesis and gas permeation properties of thin Pd/alumina membranes [J]. AIChE Journal, 1998, 44(1): 174‒183.

[39] Ye J, Dan G, Yuan Q. The preparation of ultrathin palladium membranes [J]. Key Engineering Materials, 1991, 61‒62: 437‒442.

[40] Mattox D M. Handbook of physical vapor deposition (PVD) process [M]. New Jersey: William Andrew Inc., 1998.

[41] Nam S E, Lee K H. A study on the palladium /nickel composite membrane by vacuum electrodeposition [J]. Journal of Membrane Science, 2000, 170(1): 91‒99.

[42] Mckinley D L. Method for hydrogen separation and purification [EB/OL]. ‍(2017-05-15)‍[2022-01-15]. ‍https://www.‍semanticscholar.org/paper/METHOD-FOR-HYDROGEN-SEPARATION-AND-PURIFICATION-McKinley/36dd88a92a548a5fa8cbc82cd7cd61da1ff68bcc#extracted. 链接1

[43] Gade S K, Thoen P M, Way J D. Unsupported palladium alloy foil membranes fabricated by electroless plating [J]. Journal of Membrane Science, 2008, 316(1‒2): 112‒118.

[44] Mazali I O, Filho A G S, Viana B C, et al. Size-controllable synthesis of nanosized-TiO2 anatase using porous vycor glass as template [J]. Journal of Nanoparticle Research, 2006, 8: 141‒148.

[45] Masuda H, Nishio K, Baba N. Preparation of microporous metal membrane using two-step replication of interconnected structure of porous glass [J]. Journal of Materials Science, 1994, 13: 338‒340.

[46] Uemiya S, Sato N, Ando H, et al. Separation of hydrogen through palladium thin film supported on a porous glass tube [J]. Journal of Membrane Science, 1991, 56(3): 303‒313.

[47] Kuraoka K, Zhao H, Yazawa T. Pore-filled palladium-glass composite membranes for hydrogen [J]. Journal of Materials Science, 2004, 39: 1879‒1881.

[48] Zhang X L, Xiong G X, Yang W S. A modified electroless plating technique for thin dense palladium composite membranes with enhanced stability [J]. Journal of Membrane Science, 2008, 314(1‒2): 226‒237.

[49] Itoh N, Akiha T, Sato T. Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity [J]. Catalysis Today, 2005, 104(2‒4): 231‒237.

[50] Zhao C Y, Xu H Y, Goldbach A. Duplex Pd/ceramic/Pd composite membrane for sweep gas-enhanced CO2 capture [J]. Journal of Membrane Science, 2018, 563: 388‒397.

[51] Melendez J, Fernandez E, Gallucci F, et al. Preparation and characterization of ceramic supported ultra-thin (~1 µm) Pd-Ag membranes [J]. Journal of Membrane Science, 2017, 528: 12‒23.

[52] Abate S, Genovese C, Perathoner S, et al. Performances and stability of a Pd-based supported thin film membrane prepared by EPD with a novel seeding procedure: Part 1-Behaviour in H2:N2 mixtures [J]. Catalysis Today, 2009, 145(1‒2): 63‒71.

[53] Wang L S, Yoshiie R, Uemiya S. Fabrication of novel Pd-Ag-Ru/Al2O3 ternary alloy composite membrane with remarkably enhanced H2 permeability [J]. Journal of Membrane Science, 2007, 306(1‒2): 1‒7.

[54] Guo Y, Zhang X F, Deng H, et al. A novel approach for the preparation of highly stable Pd membrane on macroporous α‍-Al2O3 tube [J]. Journal of Membrane Science, 2010, 362(1‒2): 241‒248.

[55] Tong J H, Su L L, Haraya K, et al. Thin and defect-free Pd-based composite membrane without any interlayer and substrate penetration by a combined organic and inorganic process [J]. Chemical Communication, 2006, 10: 1142‒1144.

[56] Tong J H, Shirai R, Kashima Y, et al. Preparation of a pinhole-free Pd-Ag membrane on a porous metal support for pure hydrogen separation [J]. Journal of Membrane Science, 2005, 260(1‒2): 84‒89.

[57] Lee S M, Xu N, Kim S S, et al. Palladium/ruthenium composite membrane for hydrogen separation from the off-gas of solar cell production via chemical vapor deposition [J]. Journal of Membrane Science, 2017, 541: 1‒8.

[58] Gascon J, Kapteijn F, Zornoza B, et al. Practical approach to zeolitic membranes and coatings: State of the art, opportunities, barriers, and future perspectives [J]. Chemistry of Materials, 2012, 24(15): 2829‒2844.

[59] Lin Y S, Duke M C. Recent progress in polycrystalline zeolite membrane research [J]. Current Opinion in Chemical Engineering, 2013, 2(2): 209‒216.

[60] Huang A S, Liang F Y, Steinbach F, et al. Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker [J]. Journal of Membrane Science, 2010, 350(1‒2): 5‒9.

[61] Huang A S, Liu Q, Wang N Y, et al. Covalent synthesis of dense zeolite LTA membranes on various 3-chloropropyltrimethoxysilane functionalized supports [J]. Journal of Membrane Science, 2013, 437: 57‒64.

[62] Tang Z, Dong J H, Nenoff T M. Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen [J]. Langmuir, 2009, 25(9): 4848‒4852.

[63] Duke M C, Pas S J, Hill A J, et al. Exposing the molecular sieving architecture of amorphous silica using positron annihilation spectroscopy [J]. Advanced Functional Materials, 2008, 18(23): 3818‒3826.

[64] Gu Y F, Oyama S T. Ultrathin, hydrogen-selective silica membranes deposited on alumina-graded structures prepared from size-controlled boehmite sols [J]. Journal of Membrane Science, 2007, 306(1‒2): 216‒227.

[65] Kiyono M, Williams P J, Koros W J. Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes [J]. Journal of Membrane Science, 2010, 359(1‍‒‍2): 2‒10.

[66] He X Z, Hägg M B. Hollow fiber carbon membranes: From material to application [J]. Chemical Engineering Journal, 2013, 215‒216: 440‒448.

[67] Lee H J, Yoshimune M, Suda H. Gas permeation properties of poly(2,‍6-dimethyl-1,‍4-phenylene oxide) (PPO) derived carbon membranes prepared on a tubular ceramic support [J]. Journal of Membrane Science, 2006, 279(1‒2): 372‒379.

[68] Li L, Song C W, Jiang H W, et al. Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer [J]. Journal of Membrane Science, 2014, 450: 469‒477.

[69] Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets [J]. Nano Letters, 2008, 8(8): 2458‒2462.

[70] Liu G P, Jin W Q, Xu N P. Graphene-based membranes [J]. Chemical Society Reviews, 2015, 44(15): 5016‒5030.

[71] Koenig S P, Wang L D, Pellegrino J, et al. Selective molecular sieving through porous graphene [J]. Nature Nanotechnol, 2012, 7: 728‒732.

[72] Jiang D E, Cooper V R, Dai S. Porous graphene as the ultimate membrane for gas separation [J]. Nano Letters, 2009, 9(12): 4019‒4024.

[73] Li H, Song Z N, Zhang X J, et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation [J]. Science, 2013, 342(6154): 95‒98.

[74] Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials [J]. Small, 2010, 6(6): 711‒723.

[75] Kim H W, Yoon H W, Yoon S M, et al. Selective gas transport through few-layered graphene and graphene oxide membranes [J]. Science, 2013, 342(6154): 91‒95.

[76] Kim H W, Yoon H W, Yoo B M, et al. High-performance CO2-philic graphene oxide membranes under wet-conditions [J]. Chemical Communication, 2014, 50(88): 13563‒13566.

[77] Bux H, Liang F Y, Li Y S, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis [J]. Journal of the American Chemical Society, 2009, 131(44): 16000‒16001.

[78] Liu Y Y, Ng Z F, Khan E A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates [J]. Microporous and Mesoporous Materials, 2009, 118(1‒3): 296‒301.

[79] Guo H L, Zhu G S, Hewitt I J, et al. "Twin copper source" growth of metal-organic framework membrane Cu3(BTC)2 with high permeability and selectivity for recycling H2 [J]. Journal of the American Chemical Society, 2009, 131(5): 1646‒1647.

[80] Kang Z X, Xue M, Fan L, et al. "Single nickel source" in situ fabrication of a stable homochiral MOF membrane with chiral resolution properties [J]. Chemical Communication, 2013, 49: 10569‒10571.

[81] Huang A S, Liu Q, Wang N Y, et al. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity [J]. Journal of the American Chemical Society, 2014, 136(42): 14686‒14689.

[82] Yoo Y, Lai Z P, Jeong H K. Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth [J]. Microporous and Mesoporous Materials, 2009, 123(1‒3): 100‒106.

[83] Nan J P, Dong X L, Wang W J, et al. Step-by-step seeding procedure for preparing HKUST-1 membrane on porous alpha-alumina support [J]. Langmuir, 2011, 27(8): 4309‒4312.

[84] Lee D J, Li Q M, Kim H, et al. Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique [J]. Microporous and Mesoporous Materials, 2012, 163: 169‒177.

[85] Pandey P, Chauhan R S. Membranes for gas separation [J]. Progress in Polymer Science, 2001, 26(6): 853‒893.

[86] Freeman B D. Basis of permeability selectivity tradeoff relations in polymeric gas [J]. Macromolecules, 1999, 32(2): 375‒380.

[87] Vanherck K, Koeckelberghs G, Vankelecom I F J. Crosslinking polyimides for membrane applications: A review [J]. Progress in Polymer Science, 2013. 38(6): 874‒896.

[88] Low B T, Xiao Y, Chung T S. Amplifying the molecular sieving capability of polyimide membranes via coupling of diamine networking and molecular architecture [J]. Polymer, 2009, 50(14): 3250‒3258.

[89] Shao L, Lau C H, Chung T S. A novel strategy for surface modification of polyimide membranes by vapor-phase ethylenediamine (EDA) for hydrogen purification [J]. International Journal of Hydrogen Energy, 2009, 34(20): 8716‒8722.

[90] Shao L, Liu L, Cheng S X, et al. Comparison of diamino cross-linking in different polyimide solutions and membranes by precipitation observation and gas transport [J]. Journal of Membrane Science, 2008, 312(1‒2): 174‒185.

[91] Berchtold K A, Singh R P, Young J S, et al. Polybenzimidazole composite membranes for high temperature synthesis gas separations [J]. Journal of Membrane Science, 2012, 415‒416: 265‒270.

[92] Li X, Singh R P, Dudeck K W, et al. Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures [J]. Journal of Membrane Science, 2014, 461: 59‒68.

[93] Park H B, Jung C H, Lee Y M, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions [J]. Science, 2007, 318(5848): 254‒258.

[94] Kim S, Lee Y M. Rigid and microporous polymers for gas separation membranes [J]. Progress in Polymer Science, 2015, 43: 1‒32.

[95] Han S H, Misdan N, Kim S. Thermally rearranged (TR) polybenzoxazole: Effects of diverse imidization routes on physical properties and gas transport behaviors [J]. Macromolecules, 2010, 43(18): 7657‒7667.

[96] Park C H, Tocci E, Kim S, et al. A simulation study on OH-containing polyimide (HPI) and thermally rearranged polybenzoxazoles (TR-PBO): Relationship between gas transport properties and free volume morphology [J]. Journal of Physical Chemistry B, 2014, 118(10): 2746‒2757.

[97] Goh P S, Ismail A F, Sanip S M, et al. Recent advances of inorganic fillers in mixed matrix membrane for gas separation [J]. Separation and Purification Technology, 2011, 81(3): 243‒264.

[98] Dong G X, Li H Y, Chen V. Challenges and opportunities for mixed-matrix membranes for gas separation [J]. Journal of Materials Chemistry A, 2013, 1(15): 4610‒4630.

[99] Joly C, Goizet S, Schrotter J C, et al. Sol-gel polyimide-silica composite membrane gas transport properties [J]. Journal of Membrane Science, 1997, 130(1‒2): 63‒74.

[100] Sen D, Kalıpçılar H, Yilmaz L. Development of polycarbonate based zeolite 4A filled mixed matrix gas separation membranes [J]. Journal of Membrane Science, 2007, 303(1‒2): 194‒203.

[101] Ordonez M J C, Balkus K J, Ferraris J P, et al. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes [J]. Journal of Membrane Science, 2010, 361(1‒2): 28‒37.

相关研究