期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2022年 第24卷 第3期 doi: 10.15302/J-SSCAE-2022.03.021

基于场反位形的磁约束氘氘脉冲聚变中子源方案设计

1. 华中科技大学电气与电子工程学院磁约束聚变与等离子体国际合作联合实验室,武汉 430074;

2. 中国科学院等离子体物理研究所,合肥 230031;

资助项目 :国家重点研发计划项目(2017YFE0301805;2017YFE0301804) 收稿日期: 2022-02-18 修回日期: 2022-05-05 发布日期: 2022-06-23

下一篇 上一篇

摘要

聚变中子源可以真实反映材料在聚变中子辐照下的特性变化,对于开展聚变堆材料测试具有重要意义。基于加速器打靶原理的国际聚变材料辐照装置(IFMIF)与理想聚变中子源在聚变中子能谱等方面仍有一定差异,因此需对聚变中子源方案进行新的思索。本文围绕磁约束聚变中子源开展了磁场位形、加热方案设计与相关计算,分析了场反等离子体在两级级联磁压缩后的等离子体温度、密度演化过程及相应的中子产额,并研究了考虑双流体效应与有限拉莫尔半径效应后场反等离子体倾斜模、旋转模等磁流体不稳定性的抑制情况,最终给出了氘氘脉冲聚变中子源的关键物理参数。研究结果表明,该中子源有望获得年均2 MW/m2以上的高通量密度的聚变中子,能够满足商业聚变示范堆材料测试要求;经功率估算显示,基于场反位形进行两级级联磁压缩的新型聚变中子源方案还具备成为氘氘脉冲聚变能源的应用前景。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Perkins F W, Post D E, Uckan N A, et al. Chapter 1: Overview and summary [J]. Nuclear Fusion, 1999, 39: 2137‒2174.

[ 2 ] Shimada M, Campbell D J, Mukhovatov V, et al. Chapter 1: Overview and summary [J]. Nuclear Fusion, 2007, 47: 1‒17.

[ 3 ] Zinkle S J, Möslang A. Evaluation of irradiation facility options for fusion materials research and development [J]. Fusion Engineering and Design, 2013, 88(6‒8): 472‒482.

[ 4 ] Kotelnikov I, Chen Z, Bagryansky P, et al. Summary of the 2nd international workshop on gas-dynamic trap based fusion neutron source (GDT-FNS) [J]. Nuclear Fusion, 2020, 60(6): 067001.

[ 5 ] Ivanov A A, Prikhodko V V. Gas-dynamic trap: An overview of the concept and experimental results [J]. Plasma Physics and Controlled Fusion, 2013, 55 (6): 063001.

[ 6 ] Gota H, Binderbauer M W, Tajima T, et al. Overview of C-2W: High temperature, steady-state beam-driven field-reversed configuration plasmas [J]. Nuclear Fusion, 2021, 61(10): 106039.

[ 7 ] Furth H P, Yoshikawa S. Adiabatic compression of tokamak discharges [J]. The Physics of Plasmas, 1970, 13(10): 2593‒2596.

[ 8 ] Spencer R, Tuszewski M, Linford R. Adiabatic compression of elongated field‐reversed configurations [J]. The Physics of Fluids, 1983, 26(6): 1564‒1568.

[ 9 ] Bol K, Ellis R, Eubank H, et al. Adiabatic compression of the tokamak discharge [J]. Physical Review Letters, 1972, 29(22): 1495.

[10] Hirano Y, Sekiguchi J, Matsumoto T, et al. A DT fusion reactor design in field-reversed configuration using normal conductive coils [J]. Nuclear Fusion, 2017, 58(1): 016004.

[11] Binderbauer M, Tajima T, Steinhauer L, et al. A high performance field-reversed configuration [J]. Physics of Plasmas, 2015, 22(5): 056110.

[12] Trask E. Overview of Tri Alpha Energy´s experimental program and recent progress on transport analysis [C]. Irvine: US-Japan Workshop on Compact Torus, 2016.

[13] Wesson J. Tokamks (fourth edition) [M]. New York: Oxford University Press, 2011.

[14] Nations M, Gupta D, Bolte N, et al. Development of a Zeff diagnostic using visible and near-infrared bremsstrahlung light for the C-2W field-reversed configuration plasma [J]. Review of Scientific Instruments, 2018, 89: 10D130.

[15] Sovinec C R, Glasser A H, Gianakon T A, et al. Nonlinear magnetohydrodynamics simulation using high-order finite elements [J]. Journal of Computational Physics, 2004, 195 (1): 355‒386.

[16] Guo H Y, Binderbauer M W, Tajima T, et al. Achieving a long-lived high-beta plasma state by energetic beam injection [J]. Nature Communications, 2015, 6(1): 6897.

[17] Barnes D C, Belova E V, Davidson R C. Field-Reversed Configuration (FRC) equilibrium and stability (IAEA-CSP—19/CD) [R]. Vienna: International Atomic Energy Agency (IAEA), 2003.

[18] Steinhauer L C. Review of field-reversed configurations [J]. Physics of Plasmas, 2011, 18(7): 070501.

[19] 秦运文 . 托卡马克实验的物理基础第一版 [M]. 北京 : 原子能出版社 , 2011 .
Qin Y W. Physical Basis of the Tokamak Experiment (first edition) [M]. Beijing: Atomic Energy Press, 2011. Chinese.

相关研究