期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2022年 第24卷 第3期 doi: 10.15302/J-SSCAE-2022.03.022

天然气水合物开采技术研究现状与展望

1. 天然气水合物国家重点实验室,北京100028;

2. 中海油研究总院有限责任公司,北京100028;

3. 中国海洋石油集团有限公司,北京100027;

4. 海洋能源利用与节能教育部重点实验室,辽宁大连116024;

资助项目 :中国工程院咨询项目“面向2035 海洋能源开发及核心技术战略研究”(2020-ZD-13) 收稿日期: 2022-04-05 修回日期: 2022-05-31 发布日期: 2022-06-23

下一篇 上一篇

摘要

天然气水合物是一种世界公认的最具潜力的清洁能源,目前我国对水合物的勘探开采研究正进入关键突破阶段,南海泥质粉砂天然气水合物成藏机理与赋存规律尚不明晰,开采过程水合物分解相变机制与安全、高效技术仍需进一步探明。本文重点介绍了包括降压开采、固态流化开采等在内的天然气水合物开采技术的研究与应用现状,并通过分析天然气水合物开采技术存在的问题给出了相应的发展建议。研究建议,推动天然气水合物、深部油气等多气源立体开采基础研究和重大工程;强化技术融合,推进理论与实践协同并进;推进天然气水合物中试尺度实验和多场耦合的数值模拟大科学平台建设;建立健全天然气水合物的相关标准等措施,以提升我国天然气水合物开采技术的研发水平和技术成熟度,以期早日实现天然气水合物的大规模商业化开发,服务于我国的能源安全战略。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Zhao J, Zheng J N, Wang X R, et al. Effects of underlying gas on formation and gas production of methane hydrate in muddy low-permeability cores [J]. Fuel, 2022, 309: 122128.

[ 2 ] Chen B B, Sun H R, Zhou H, et al. Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment [J]. Applied Energy, 2019, 238: 274‒283.

[ 3 ] Zhao J F, Liu Y L, Guo X W, et al. Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization [J]. Applied Energy, 2020, 260: 114275.

[ 4 ] Yang L, Zhao J F, Wang B, et al. Effective thermal conductivity of methane hydrate-bearing sediments: Experiments and correlations [J]. Fuel, 2016, 179: 87‒96.

[ 5 ] He J, Li X S, Chen Z Y, et al. Combined styles of depressurization and electrical heating for methane hydrate production [J]. Applied Energy, 2021, 282: 116112.

[ 6 ] He J, Li X S, Chen Z Y, et al. Sustainable hydrate production using intermittent depressurization in hydrate-bearing reservoirs connected with water layers [J]. Energy, 2022, 238: 121752.

[ 7 ] Li N, Zhang J, Xia M J, et al. Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator [J]. Energy, 2021, 234: 121183.

[ 8 ] Wan Q C, Si H, Li B, et al. Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization [J]. Applied Energy, 2020, 278: 115612.

[ 9 ] Sun Y M, Li S D, Lu C, et al. The characteristics and its implications of hydraulic fracturing in hydrate-bearing clayey silt [J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104189.

[10] Wan Q C, Yin Z Y, Gao Q, et al. Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O [J]. Applied Energy, 2022, 305: 117902.

[11] Wang Y, Feng J C, Li X S, et al. Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme [J]. Energy, 2018, 160: 835‒844.

[12] Yang M J, Zhao G J, Sun H R, et al. In-situ investigation on methane hydrate decomposition characteristics under variational seawater flow process [J]. Fuel, 2022, 310: 122123.

[13] Zhao J, Zheng J N, Dong S, et al. Gas production enhancement effect of underlying gas on methane hydrates in marine sediments by depressurization [J]. Fuel, 2022, 310: 122415.

[14] Zhao J, Zheng J N, Ma S H, et al. Formation and production characteristics of methane hydrates from marine sediments in a core holder [J]. Applied Energy, 2020, 275: 115393.

[15] Shi K J, Wei R P, Guo X W, et al. Enhancing gas production from hydrate-bearing reservoirs through depressurization-based approaches: Knowledge from laboratory experiments [J]. Energy & Fuels, 2021, 35(8): 6344‒6358.

[16] Guan D W, Shi K J, Guo X W, et al. Progress on laboratory-scale reactors for simulating gas production from hydrate reservoir [J]. Energy & Fuels, 2021, 35(20): 16416‒16431.

[17] Choudhary N, Phirani J. Effect of well configuration, well placement and reservoir characteristics on the performance of marine gas hydrate reservoir [J]. Fuel, 2022, 310: 122377.

[18] Gerami S, Darvish M P. Predicting gas generation by depressurization of gas hydrates where the sharp-interface assumption is not valid [J]. Journal of Petroleum Science and Engineering, 2007, 56(1‒3): 146‒164.

[19] Wang T, Zhang L X, Sun L J, et al. Methane recovery and carbon dioxide storage from gas hydrates in fine marine sediments by using CH4/CO2 replacement [J]. Chemical Engineering Journal, 2021, 425: 131562.

[20] Wang Z Y, Liao Y Q, Zhang W D, et al. Coupled temperature field model of gas-hydrate formation for thermal fluid fracturing [J]. Applied Thermal Engineering, 2018, 133: 160‒169.

[21] Konno Y, Fujii T, Sato A, et al. Key findings of the world´s first offshore methane hydrate production test off the coast of Japan: Toward future commercial production [J]. Energy & Fuels, 2017, 31(3): 2607‒2616.

[22] Wei J G, Fang Y X, Lu H L, et al. Distribution and characteristics of natural gas hydrates in the Shenhu Sea Area, South China Sea [J]. Marine and Petroleum Geology, 2018, 98: 622‒628.

[23] Zhang W, Liang J Q, Wei J G, et al. Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, Northern South China Sea [J]. Marine and Petroleum Geology, 2020, 114: 104191.

[24] Tabatabaie S H, Darvish M P. Analytical solution for gas production from hydrate reservoirs underlain with free gas [J]. Journal of Natural Gas Science and Engineering, 2009, 1(1‒2): 46‒57.

[25] Liu Y G, Hou J, Chen Z X, et al. A novel natural gas hydrate recovery approach by delivering geothermal energy through dumpflooding [J]. Energy Conversion and Management, 2020, 209: 112623.

[26] Liu Y Z, Zhang L X, Yang L, et al. Behaviors of CO2 hydrate formation in the presence of acid-dissolvable organic matters [J]. Environmental Science & Technology, 2021, 55(9): 6206‒6213.

[27] Wang T, Zhang L X, Sun L J, et al. A novel apparatus for measuring gas solubility in aqueous solution under multiphase conditions by isobaric method [J]. Review of Scientific Instruments, 2021, 92: 105101.

[28] Wei R P, Shi K J, Guo X W, et al. Evolving thermal conductivity upon formation and decomposition of hydrate in natural marine sediments [J]. Fuel, 2021, 302: 121141.

[29] Kuang Y M, Yang L, Li Q P, et al. Physical characteristic analysis of unconsolidated sediments containing gas hydrate recovered from the Shenhu Area of the South China sea [J]. Journal of Petroleum Science and Engineering, 2019, 181: 106173.

[30] Sun Z W, Shi K J, Guan D W, et al. Current flow loop equipment and research in hydrate-associated flow assurance [J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104276.

[31] Zhao J F, Liu Y Z, Yang L, et al. Organics-coated nanoclays further promote hydrate formation kinetics [J]. The Journal of Physical Chemistry Letters, 2021, 12(13): 3464‒3467.

相关研究