期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2022年 第24卷 第4期 doi: 10.15302/J-SSCAE-2022.04.022

重大基础设施非核强电磁脉冲威胁与防护策略研究

1. 北京航空航天大学电子信息工程学院,北京 100191;

2. 北京邮电大学电子工程学院,北京 100876;

3. 北京交通大学 詹天佑学院,北京 100044;

4. 中国电力科学研究院有限公司,北京 100192;

资助项目 :中国工程院咨询项目“电磁安全”(2021-XZ-40) 收稿日期: 2022-06-13 修回日期: 2022-07-05 发布日期: 2022-07-28

下一篇 上一篇

摘要

国家现代化建设和运行高度依赖重大基础设施,相应安全问题成为国家安全的核心要素之一;非核强电磁脉冲源生成 技术逐步成熟并朝着普及化、隐蔽化方向发展,已成为重大基础设施的现实威胁类别。重大基础设施的电磁安全保障研究成 为我国面临的紧迫性、战略性任务。本文以重大基础设施的非核强电磁脉冲威胁为研究对象,明确了概念内涵并凝练了重大 需求,梳理了先发国家在本领域所发布的国家政策、产业标准、基础研究、应急管理等举措;阐述了防护关键技术体系,包 括正向设计、等效试验评估、威胁监测与预警等方面。在剖析我国重大基础设施的非核强电磁脉冲防护现状及存在问题的基 础上,提出了强化政府领导、组织科研攻关、制定标准规范、激发企业活力、分类分阶段实施防护加固、促进人才培育、加 强公众培训等方面的基本策略。相关研究可为我国非核强电磁脉冲防护领域建设与发展、提升国家应对新型安全威胁能力提 供基础参考。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Foster J S, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the United States from electromagnetic pulse(EMP) attack: Critical national infrastructures [R]. Mclean: Electromagnetic Pulse Commission, 2008.

[ 2 ] Ostrich J, Kumar P. DOE electromagnetic pulse resilience action plan [EB/OL]. (2017-01-06)‍[2022-06-01]. https: //www.energy.gov/oe/downloads/doe-electromagnetic-pulse-resilience-action-plan.
Ostrich J, Kumar P. DOE electromagnetic pulse resilience action plan [EB/OL]. (2017-01-06) [2022-06-01]. 链接1

[ 3 ] Wang D W, Li Y F, Dehghanian P, et al. Power grid resilience to electromagnetic pulse(EMP) disturbances: A literature review [C]. Wichita: 2019 North American Power Symposium, 2019.

[ 4 ] 邱爱慈 , 别朝红 , 李更丰 , 等 . 强电磁脉冲威胁与弹性电力系统发展战略 [J]. 现代应用物理 , 2021 , 12 3 : 1 ‒ 10 .
Qiu A C, Bie C H, Li G F, et al. HEMP threat and development strategy of resilient power system [J]. Modern Applied Physics, 2021, 12(3): 1‒10. Chinese.

[ 5 ] Sun K. Complex networks theory: A new method of research in power grid [C]. Dalian: 2005 IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific, 2005.

[ 6 ] Xu W T, Zhou J P, Qiu G. China´s high-speed rail network construction and planning over time: A network analysis [J]. Journal of Transport Geography, 2018, 70: 40‒54.

[ 7 ] Wang L, An M, Jia L, et al. Application of complex network principles to key station identification in railway network efficiency analysis [J]. Journal of Advanced Transportation, 2019 (7291): 1‒13.

[ 8 ] Li K J, Xie Y Z, Zhang F, et al. Statistical inference of serial communication errors caused by repetitive electromagnetic disturbances [J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(4): 1160‒1168.

[ 9 ] 王意 , 邹艳丽 , 黄李 , 等 . 综合考虑局部和全局特性的电网关键节点识别 [J]. 计算物理 , 2018 , 35 1 : 119 ‒ 126 .
Wang Y, Zou Y L, Huang L, et al. Key nodes identification of power grid considering local and global characteristics [J]. Chinese Journal of Computational Physics, 2018, 35(1): 119‒126. Chinese.

[10] 叶玉玲 , 李文卿 , 张俊 . 高速铁路网络复杂特性及其传播动力学研究 [J]. 同济大学学报自然科学版 , 2019 , 47 5 : 655 ‒ 662 .
Ye Y L, Li W Q, Zhang J. Complex characteristics and propagation dynamics of high speed railway network [J]. Journal of Tongji University (Natural Science), 2019, 47(5): 655‒662. Chinese.

[11] Guo Y F, Zhang D R, Li Z C, et al. Overviews on the applications of the Kuramoto model in modern power system analysis [J]. International Journal of Electrical Power & Energy System, 2021, 129: 1‒15.

[12] Liu Q F, Ni C, Zhang H Q, et al. Lumped-network FDTD method for simulating transient responses of RF amplifiers excited by IEMI signals [J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(5): 1512‒1521.

[13] Lanzrath M, Suhrke M, Hirsch H. HPEM-based risk assessment of substations enabled for the smart grid [J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(1): 173‒185.

[14] Zhou L, San Z W, Hua Y J, et al. Investigation on failure mechanisms of GaN HEMT caused by high-power microwave(HPM) pulses [J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(3): 902‒909.
Zhou L, San Z W, Hua Y J, et al. Investigation on failure mechinisms of GaN HEMT caused by high-power microwave(HPM) pulses [J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(3): 902‒909.

[15] Zhang J H, Lin M T, Wu Z F, et al. Energy selective surface with power-dependent transmission coefficient for high-power microwave protection in waveguide [J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2494‒2502.

[16] Xiao M, Ma Y W, Liu K, et al. 10 kV, 39 mΩ·cm2 multi-channel AlGaN/GaN schottky barrier diodes [J]. IEEE Electron Device Letters, 2021, 42(6): 808‒811.

[17] Wen Y H, Hou W X. Research on electromagnetic compatibility of Chinese high speed railway system [J]. Chinese Journal of Electronics, 2020, 29(1): 16‒21.

[18] Wu Y D, Weng J, Tang Z, et al. Vulnerabilities, attacks, and countermeasures in Balise-based train control systems [J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4): 814‒823.

[19] 丛培天 . 中国脉冲功率科技进展简述 [J]. 强激光与粒子束 , 2020 , 32 2 : 2 ‒ 12 .
Cong P T. Review of Chinese pulsed power science and technology [J]. High Power Laser and Particle Beams, 2020, 32(2): 2‒12.

[20] Zhang J, Zhang D, Fan Y W, et al. Progress in narrowband high-power microwave sources [J]. Physics of Plasmas, 2020, 27(1): 1‒15.

[21] Drikas Z B, Addissie B D, Mendez V M, et al. A compact, high-gain, high-power, ultrawideband microwave pulse compressor using time-reversal techniques [J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(8): 3355‒3367.

[22] Shi L H, Zhang X, Sun Z, et al. An overview of the HEMP research in China [J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 422‒430.

[23] Baker G H, Radasky W A, Gilbert J L. Electromagnetic pulse(EMP) protection and resilience guidelines for critical infrastructure and equipment [EB/OL]. (2019-02-05)‍[2021-12-10]. https: //michaelmabee.‍info/electromagnetic-pulse-emp-protection-and-resilience-guidelines/.
Baker G H, Radasky W A, Gilbert J L. Electromagnetic pulse (EMP) protection and resilience guidelines for critical infrastructure and equipment [EB/OL]. (2019-02-05) [2021-12-10]. 链接1

[24] Electric Power Research Institute(EPRI). High-altitude electromagnetic pulse and the bulk power system: Potential impacts and mitigation strategies [R]. Palo Alto: Electric Power Research Institute(EPRI), 2019.

[25] Pierre B J, Guttromson R T, Eddy J, et al. A framework to evaluate grid consequences from high altitude EMP events [EB/OL]. (2020-07-16)‍[2022-06-01].‍ https: //www.‍osti.‍gov/servlets/purl/1810043.
Pierre B J, Guttromson R T, Eddy J, et al. A framework to evaluate grid consequences from high altitude EMP events [EB/OL]. (2020-07-16) [2022-06-01]. 链接1

[26] Yates L, Gunning B P, Crawford M H, et al. Demonstration of >6.0 kV breakdown voltage in large area vertical GaN P-N diodes with step-etched junction termination extensions [J]. IEEE Transactions on Electron Devices, 2022, 69(4): 1931‒1937.

[27] Arnesen O-H, Hoad R. Overview of the European project "HIPOW" [J]. IEEE Electromagnetic Compatibility Magazine, 2014, 3(4): 64‒67.

[28] Beek S, Dawson J, Flintoft I, et al. Overview of the European project STRUCTURES [J]. IEEE Electromagnetic Compatibility Magazine, 2014, 3(4): 70‒79.

相关研究