《中国工程科学》 >> 2023年 第25卷 第1期 doi: 10.15302/J-SSCAE-2023.01.008
生物医用有色金属材料研究现状与未来发展
1. 郑州大学材料科学与工程学院,郑州 450001;
2. 北京大学材料科学与工程学院,北京 100871;
3. 国家生物医学材料工程技术研究中心,成都 610064
收稿日期 :2022-11-12 修回日期 :2023-01-03 发布日期 :2023-01-30下一篇 上一篇
摘要
生物医用有色金属材料发展迅速,形成了适应不同体内环境、不同组织的医用有色金属材料及器件体系;着眼未来开展领域研究规划,提升新型医用有色金属材料及器件的临床应用水平,兼具理论研究与实践应用价值。本文论述了生物医用有色金属材料在耐蚀性、耐磨性、疲劳强度及韧性、生物适配性等方面的关键性能要求,系统梳理了永久性植入有色金属材料、生物可降解有色金属材料、多孔医用有色金属材料、医用有色金属表面改性等细分领域的研究进展、发展趋势与科学问题。在凝练各类生物医用有色金属材料未来研究方向的基础上,提出了加强基础与关键核心技术研究、组建“产学研医监”协同创新体、建立相关标准及规范、培育高精尖人才体系等发展建议,以期为新型材料发展布局与前沿技术研发提供先导性参考。
关键词
生物医用有色金属材料 ; 永久性植入有色金属材料 ; 生物可降解有色金属材料 ; 多孔医用有色金属材料 ; 医用有色金属表面改性
参考文献
[1] Tu H L, Zhao H B , Fan Y Y, al et.Recent developments in nonferrous metals and related materials for biomedical applications in China: A review [J]. Rare Metals,2022, 41(5):1410‒1433.
[2] 张文毓 . 生物医用金属材料研究现状与应用进展 [J]. 金属世界 , 2020 1 : 21 ‒ 27 .
[3] 郑玉峰 , 杨宏韬 . 血管支架用可降解金属研究进展 [J]. 金属学报 , 2017 , 53 10 : 1127 ‒ 1137 .
[4] 梁新杰 , 杨俊英 . 生物医用材料的研究现状与发展趋势 [J]. 新材料产业 , 2016 2 : 2 ‒ 5 .
[5] 李崇崇 , 王健 , 王春仁 , 等 . 低模量钛合金骨科植入物材料研究进展 [J]. 中国药事 , 2019 , 33 11 : 1310 ‒ 1314 .
[6] Wang H, Song W, Liu M F, al et. Manufacture-friendly nanostructured metals stabilized by dual-phase honeycomb shell [J]. Nature Communications, 2022, 13: 2034.
[7] Chowdhury M A, HossainM D H, Hossain N, al et. Advances in coatings on Mg alloys and their anti-microbial activity for implant applications [J]. Arabian Journal of Chemistry, 2022, 15(11): 104214.
[8] Sánchez-Bodón J, del Olmo J A, Alonso J M, al et. Bioactive coatings on titanium: A review on hydroxylation, self-assembled monolayers (SAMs) and surface modification strategies [J]. Polymers, 2022, 14(1): 165.
[9] 麻西群 , 于振涛 , 牛金龙 , 等 . 新型生物医用钛合金的设计及应用进展 [J]. 有色金属材料与工程 , 2018 , 39 6 : 26 ‒ 31 .
[10] Jawed S F, Rabadia C D, Khan M A, al et. Effect of alloying elements on the compressive mechanicalproperties of biomedical titanium alloys: A systematic review [J]. ACS Omega, 2022, 7(34): 29526-29542.
[11] V Dobromyslov A. Bainitictransformations in titanium alloys [J]. Physics of Metals and Metallography, 2021, 122: 237‒265.
[12] Iijima Y, Nagase T, Matsugaki A, al et. Design and development of Ti-Zr-Hf-Nb-Ta-Mo high-entropyalloys for metallic biomaterials [J]. Materials & Design, 2021, 202: 109548.
[13] Nagase T, Iijima Y, Matsugaki A, al et. Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials [J]. Materials Science & Engineering: C, 2020, 107: 110322.
[14] Bayode B L, Teffo M L, Tayler T, al et. Structural, mechanical and electrochemical properties of spark plasma sintered Ti-30Ta alloys [J]. Materials Science and Engineering: B, 2022, 283: 115826.
[15] Xu S H, Du M, Li J, al et. Bio-mimic Ti-Ta composite with hierarchical "brick-and-mortar" microstructure [J]. Materialia, 2019, 8: 100463.
[16] Mahmoudi P, Akbarpour M R, Laken H B, al et. Antibacterial Ti-Cu implants: A critical review on mechanisms of action [J]. Materials Today Bio, 2022, 17: 100447.
[17] Zhuang Y F, Ren L, Zhang S Y, al et. Antibacterial effect of a copper-containing titanium alloy againstimplant-associated infection induced by methicillin-resistantstaphylococcus aureus [J]. Acta Biomaterialia, 2021, 119: 472‒484.
[18] 于佳莹 , 杨希祥 , 战德松 , 等 . Ti-Zr-Cu合金的抗菌性能和体外生物相容性 [J]. 材料研究学报 , 2021 , 35 11 : 873 ‒ 880 .
[19] 任玲 , 杨春光 , 杨柯 . 抗菌医用金属材料的研究与发展 [J]. 中国医疗设备 , 2017 , 32 1 : 1 ‒ 6 .
[20] Williams D . 二十一世纪生物材料定义 [M]. 赵晚露译. 北京 : 科学出版社 , 2021 .
[21] 郑玉峰 . 可降解金属研究前沿进展 [EBOL]. 2022-10-13 [ 2022-12-05 ]. https:kns.cnki.netkcmsdetail23.1345.TB.20221013.0855.002.html .
[22] 王鲁宁 , 孟瑶 , 刘丽君 , 等 . 可降解锌基生物材料的研究进展 [J]. 金属学报 , 2017 , 53 10 : 1317 ‒ 1322 .
[23] 郑玉峰 , 杨宏韬 . 锌基可降解金属研究进展与展望 [J]. 天津理工大学学报 , 2021 , 37 1 : 58 ‒ 64 .
[24] 袁广银 , 牛佳林 . 可降解医用镁合金在骨修复应用中的研究进展 [J]. 金属学报 , 2017 , 53 10 : 1168 ‒ 1180 .
[25] 东家慧 , 谭丽丽 , 杨柯 . 可降解镁基金属骨缺损修复材料的研究探索 [J]. 金属学报 , 2017 , 53 10 : 1197 ‒ 1206 .
[26] 奚廷斐 , 魏利娜 , 刘婧 , 等 . 镁合金全降解血管支架研究进展 [J]. 金属学报 , 2017 , 53 10 : 1153 ‒ 1167 .
[27] 张小农 , 左敏超 , 张绍翔 , 等 . 医用可降解血管支架临床研究进展 [J]. 金属学报 , 2017 , 53 10 : 1117 ‒ 1126 .
[28] Qin Y, Wen P, Guo H, al et. Additive manufacturing of biodegradable metals: Current research status and future perspectives [J]. Acta Biomaterialia, 2019, 98: 3‒22.
[29] Kaushik V, Nithish K B, Sakthi S, al et. Magnesium role in additive manufacturing of biomedical implants: Challenges and opportunities [J]. Additive Manufacturing, 2022, 55: 102802.
[30] Liu Y, Zheng Y F, Chen X H, al et. Fundamental theory of biodegradable metals-definition, criteria, and design [J]. Advanced Functional Materials, 2019, 29(18): 1805402.
[31] 关绍康 , 朱世杰 , 王利国 , 等 . 科技成果: 镁锌基合金的降解调控机制及生物功能化 [R]. 郑州 : 郑州大学 , 2020 .
[32] 关绍康 , 王俊 , 王利国 , 等 . 一种新型可生物降解血管支架用Mg-Zn-Y-Nd镁合金及其制备方法 : CN201110043303.8 [P]. 2011-10-15 .
[33] Zhang J, Li H Y, Wang W, al et. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study [J]. Acta Biomaterialia, 2018, 69: 372‒384.
[34] Li G N, Yang H T, Zheng Y F, al et. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility [J]. Acta Biomaterialia, 2019, 97: 23‒45.
[35] 夏亚茹 , 何学斌 , 吕萍 , 等 . 生物可降解锌合金的最新研究进展 [J]. 中国铸造装备与技术 , 2022 , 57 3 : 5 ‒ 12 .
[36] Li H F, Shi Z Z, Wan L N. Opportunities and challenges of biodegradable Zn-based alloys [J]. Journal of Materials Science & Technology, 2020, 46: 136‒138.
[37] Yang H T, Jia B , Zhang Z C, al et. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications [J]. Nature Communications, 2020, 11: 401.
[38] Shi Z Z, Gao X X, Chen H T, al et. Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn-Fe alloy through second phase refinement [J]. Materials Science and Engineering: C, 2020, 116: 111197.
[39] Su Y C, Fu J Y, Lee W, al et. Improved mechanical, degradation and biological performances of Zn-Fe alloys as bioresorbable implants [J]. Bioactive Materials, 2022, 17: 334‒343.
[40] Sun J, Zhang X, Shi Z Z, al et. Development of a high-strength Zn-Mn-Mg alloy for ligament reconstruction fixation [J]. Acta Biomaterialia, 2021, 119: 485‒498.
[41] Zhou C, Feng X Y, Shi Z Z, al et. Research on elastic recoil and restoration of vessel pulsatility of Zn-Cu biodegradable coronary stents [J]. Biomedical Engineering-Biomedizinische Technik, 2020, 65: 219‒227.
[42] 谢建新 , 宿彦京 , 薛德祯 , 等 . 机器学习在材料研发中的应用 [J]. 金属学报 , 2021 , 57 11 : 1343 ‒ 1361 .
[43] 郑玉峰 , 夏丹丹 , 谌雨农 , 等 . 增材制造可降解金属医用植入物 [J]. 金属学报 , 2021 , 57 11 : 1499 ‒ 1520 .
[44] 赵德伟 , 李军雷 . 多孔Ta的制备及其作为骨植入材料的应用进展 [J]. 金属学报 , 2017 , 53 10 : 1303 ‒ 1310 .
[45] Germaini M M, Belhabib S, Guessasma S, al et. Additive manufacturing of biomaterials for bone tissueengineering: A critical review of the state of the art andnew concepts [J]. Progress in Materials Science, 2022, 130: 100963.
[46] Davis R, Singh A, Jackson M J, al et. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing [J]. The International Journal of Advanced Manufacturing Technology, 2022, 120: 1473‒1530.
[47] Zhang D D, Peng F, Liu X Y. Protection of magnesium alloys: From physical barrier coating to smart self-healing coating [J]. Journal of Alloys and Compounds, 2021, 853: 157010.
[48] Ma Y D, Yan J, Yan T T, al et. Biological properties of Cu-bearing and Ag-bearing titanium-based alloys and their surface modifications: A review of antibacterial aspect [J]. Frontiers in Materials, 2022, 9: 999794.