期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2023年 第25卷 第2期 doi: 10.15302/J-SSCAE-2023.02.016

建筑结构隐含碳排放限值预设方法研究

1. 同济大学土木工程学院,上海 200092;

2. 广西大学土木建筑工程学院,南宁 530004

收稿日期 :2023-02-15 修回日期 :2023-02-28 发布日期 :2023-03-23

下一篇 上一篇

摘要

隐含碳排放限值是建筑结构碳排放量化调控与减碳目标保障的关键指标。本文从社会“碳中和”所需减碳路径出发,依据建筑结构保有与需求量中的新建与既有结构构成比例,提出减碳目标分解方法,为既有结构低碳维护与新建结构低碳设计提供与宏观年度减碳需求相匹配的限值预设依据。依托“双碳”目标的减碳需求构建行业预期发展情景,得出在维持现状、常规预估、拆除限制、减量预估四类典型情景下,2022 年我国新建建筑结构隐含碳排放限值分别为442.6 kg CO2e·m-2、456.2 kg CO2e·m-2、485.9 kg CO2e·m-2、616.0 kg CO2e·m-2(对应结构设计服役年限50年);给出2022—2060年建筑结构建造与维护碳排放限值的变化趋势,厘清了新建结构总量控制、既有结构延寿等减碳措施促使结构单体隐含碳排放限值宽松的成效。进一步从概率化调控、区域特征量化、可操作性、数据驱动优化等方面,提出了建筑结构隐含碳排放限值设定的相关建议。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[1]  IPCC AR5. Climate change 2014: Synthesis report: Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [R]. Geneva: Intergovernmental Panel on Climate Change, 2014.

[2]  UNFCCC. Adoption of the Paris Agreement [R]. Paris: United Nations Framework Convention on Climate Change, 2015.

[3]  中国建筑节能协会‍ ‍. 2021中国建筑能耗与碳排放研究报告: 省级建筑碳达峰形势评 估 [ R]‍. 北京: 中国建筑节能协会, 2021‍.

[4]  Dixit M K, Fernández-Solís J L, Lavy S, al et‍. Need for an embodied energy measurement protocol for buildings: A review paper [J]‍. Renewable and Sustainable Energy Reviews, 2012, 16(6): 3730‒3743‍.

[5]  Cao X Y, Li X D, Zhu Y M, al et‍. A comparative study of environmental performance between prefabricated and traditional residential buildings in China [J]‍. Journal of Cleaner Production, 2015, 109: 131‒143‍.

[6]  Akbarnezhad A, Xiao J‍. Estimation and minimization of embodied carbon of buildings: A review [J]‍. Buildings, 2017, 7(4): 5‍.

[7]  Ibn-Mohammed T, Greenough R, Taylor S, al et‍. Operational vs‍. embodied emissions in buildings—A review of current trends [J]‍. Energy and Buildings, 2013, 66: 232‒245‍.

[8]  International Organization for Standardization. Environmental management‍‒‍Life cycle assessment principles and framework (ISO 14040) [S]‍. Geneva: International Organization for Standardization, 2006‍.

[9]  Kohler N, Lützkendorf T‍. Integrated life-cycle analysis [J]‍. Building Research & Information, 2010, 30(5): 338‒348‍.

[10]  肖建庄 , 夏冰 , 肖绪文 , 等‍ . 混凝土结构低碳设计理论前瞻 [J]‍. 科学通报 , 2022 , 67 : 3425 ‒ 3438 ‍.

[11]  Hollberg A, Lützkendorf T, Habert G‍. Top-down or bottom-up?—How environmental benchmarks can support the design process [J]‍. Building and Environment, 2019, 153: 148‒157‍.

[12]  Chandrakumar C, McLaren S J, Dowdell D, al et‍. A science-based approach to setting climate targets for buildings: The case of a New Zealand detached house [J]‍. Building and Environment, 2020, 169: 106560‍.

[13]  Hoxha E, Jusselme T, Brambilla A, al et‍. Impact targets as guidelines towards low carbon buildings: Preliminary concept [R]. Los Angeles: Passive and Low Energy Architecture‍, 2016.

[14]  United Nations Environment Programme‍. 2021 Global status report for buildings and construction: Towards a zero emission, efficient and resilient buildings and construction sector [R]‍. Nairobi: United Nations Environment Progaramme, 2021‍.

[15]  Xia B, Ding T, Xiao J‍ Z. Life cycle assessment of concrete structures with reuse and recycling strategies: A novel framework and case study [J]‍. Waste Management, 2020, 105: 268‒278‍.

[16]  International Energy Agency‍. Global energy review: CO2 emissions in 2021 [R]‍. Paris: International Energy Agency, 2022‍.

[17]  中国工程院‍ . 我国碳达峰碳中和战略及路径 [R]‍. 北京 : 中国工程院 , 2022 ‍.

[18]  Liu Z, Deng Z, He G, al et‍. Challenges and opportunities for carbon neutrality in China [J]‍. Nature Reviews Earth & Environment, 2021, 3(2): 141‒155‍.

[19]  国家统计局‍ . 2021年中国统计年鉴 [M]‍. 北京 : 中国统计出版社 , 2021 ‍.

[20]  Xi F M, Davis S J, Ciais P, al et‍. Substantial global carbon uptake by cement carbonation [J]‍. Nature Geoscience, 2016, 9(12): 880‒883‍.

[21]  Zhang X C, Liu K H, Zhang Z‍ H. Life cycle carbon emissions of two residential buildings in China: Comparison and uncertainty analysis of different assessment methods [J]‍. Journal of Cleaner Production, 2020, 266: 122037‍.

[22]  Tae S, Baek C, Shin S‍. Life cycle CO2 evaluation on reinforced concrete structures with high-strength concrete [J]‍. Environmental Impact Assessment Review, 2011, 31(3): 253‒260‍.

[23]  Gong T D, Zhang W J, Liang J H, al et‍. Forecast and analysis of the total amount of civil buildings in china in the future based on population driven [J]‍. Sustainability, 2021, 13(24): 14051‍.

[24]  World Bank Group‍. China county climate and development report [R]‍. Washington DC: The World Bank Group, 2022‍.

[25]  Chastas P, Theodosiou T, Kontoleon K J, al et‍. Normalising and assessing carbon emissions in the building sector: A review on the embodied CO2 emissions of residential buildings [J]‍. Building and Environment, 2018, 130: 212‒226‍.

[26]  Xia B, Xiao J Z, Ding T, al et‍. Probabilistic sustainability design of structural concrete components under climate change [J]‍. Structural Safety, 2021, 92: 102103‍.

[27]  Li H M, Qiu P, Wu T‍. The regional disparity of per-capita CO2 emissions in China´s building sector: An analysis of macroeconomic drivers and policy implications [J]‍. Energy and Buildings, 2021, 244: 111011‍.

[28]  上海市统计局 , 国家统计局上海调查总队‍ . 2021年上海统计年鉴 [M]‍. 上海 : 中国统计出版社 , 2021 ‍.

[29]  Zhang X C, Wang F L‍. Assessment of embodied carbon emissions for building construction in China: Comparative case studies using alternative methods [J]‍. Energy and Buildings, 2016, 130: 330‒340‍.

[30]  肖建庄 , 曾亮 , 夏冰 , 等‍ . 拆解工程学理论架构与基本方法 [J]‍. 建筑结构学报 , 2022 , 43 2 : 197 ‒ 206 ‍.

相关研究