《中国工程科学》 >> 2024年 第26卷 第3期 doi: 10.15302/J-SSCAE-2024.03.006
微波介质陶瓷产业体系发展研究
下一篇 上一篇
摘要
微波介质陶瓷能够在微波电路中充当电介质使用,是现代通信技术中的关键基础材料,广泛应用于通信、导航、雷达、卫星等领域。本文在分析国内外微波介质陶瓷及产业发展现状的基础上,剖析了当前我国微波介质陶瓷发展面临的问题,提出了涵盖发展目标、发展思路、重点发展方向以及发展路线图的微波介质陶瓷产业体系自立自强发展战略。为促进微波介质陶瓷的发展,实现我国微波介质陶瓷产品结构由中低端产品为主向高端型调整,突破高性能微波介质陶瓷制备技术及上游高纯原材料的自主化生产技术,建议加强微波介质陶瓷的基础研究和应用研究、强化重点微波通信领域的创新研发、积极布局第六代移动通信用介质陶瓷和加强产业生态建设。
参考文献
[ 1 ] Yang H C, Zhang S R, Yang H Y, et al. The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams [J]. Journal of Advanced Ceramics, 2021, 10(5): 885‒932.
[ 2 ] Guo H H, Zhou D, Du C, et al. Temperature stable Li2Ti0.75(Mg1/3Nb2/3)0.25O3-based microwave dielectric ceramics with low sintering temperature and ultra-low dielectric loss for dielectric resonator antenna applications [J]. Journal of Materials Chemistry C, 2020, 8(14): 4690‒4700.
[ 3 ] Guo W J, Ma Z Y, Luo Y, et al. Structure, defects, and microwave dielectric properties of Al-doped and Al/Nd Co-doped Ba4Nd9.33Ti18O54 ceramics [J]. Journal of Advanced Ceramics, 2022, 11(4): 629‒640.
[ 4 ] Liu L T, Guo W J, Yan S J, et al. Microstructure, Raman spectroscopy, THz time domain spectrum and microwave dielectric properties of Li2Ti1-x(Zn1/3Ta2/3)xO3 ceramics [J]. Ceramics International, 2023, 49(4): 6864‒6872.
[ 5 ] Yang H Y, Chai L, Liang G C, et al. Structure, far-infrared spectroscopy, microwave dielectric properties, and improved low-temperature sintering characteristics of tri-rutile Mg0.5Ti0.5TaO4 ceramics [J]. Journal of Advanced Ceramics, 2023, 12(2): 296‒308.
[ 6 ] Hsiang H I, Chen C C, Yang S Y. Microwave dielectric properties of Ca0.7Nd0.2TiO3 ceramic-filled CaO-B2O3-SiO2 glass for LTCC applications [J]. Journal of Advanced Ceramics, 2019, 8(3): 345‒351.
[ 7 ]
王本力, 王兴艳. 全球电子陶瓷产业发展概况 [J]. 新材料产业, 2016 (1): 9‒12.
Wang B L, Wang X Y. General situation of global electronic ceramic industry development [J]. Advanced Materials Industry, 2016 (1): 9‒12.
[ 8 ] Richtmyer R D. Dielectric resonators [J]. Journal of Applied Physics, 1939, 10(6): 391‒398.
[ 9 ] Masse D J, Pucel R A, Readey D W, et al. A new low-loss high-k temperature-compensated dielectric for microwave applications [J]. Proceedings of the IEEE, 1971, 59(11): 1628‒1629.
[10] Reaney I M, Iddles D. Microwave dielectric ceramics for resonators and filters in mobile phone networks [J]. Journal of the American Ceramic Society, 2006, 89(7): 2063‒2072.
[11] Narang S B, Bahel S. Low loss dielectric ceramics for microwave applications: A review [J]. Journal of Ceramic Processing Research, 2010, 11(3): 316‒321.
[12] Ohsato H. Research and development of microwave dielectric ceramics for wireless communications [J]. Journal of the Ceramic Society of Japan, 2005, 113(1323): 703‒711.
[13]
马调调. 微波介质陶瓷材料应用现状及其研究方向 [J]. 陶瓷, 2019 (4): 13‒23.
Ma D D. Application status and research direction of microwave dielectric ceramics [J]. Ceramics, 2019 (4): 13‒23.
[14] Zhang J J, Zhai J W, Chou X J, et al. Microwave and infrared dielectric response of tunable Ba1-xSrxTiO3 ceramics [J]. Acta Materialia, 2009, 57(15): 4491‒4499.
[15] Song X Q, Du K, Li J, et al. Low-fired fluoride microwave dielectric ceramics with low dielectric loss [J]. Ceramics International, 2019, 45(1): 279‒286.
[16] Chen X M, Sun Y H, Zheng X H. High permittivity and low loss dielectric ceramics in the BaO-La2O3-TiO2-Ta2O5 system [J]. Journal of the European Ceramic Society, 2003, 23(10): 1571‒1575.
[17] Yue T, Li L X, Du M K, et al. Multilayer co-fired microwave dielectric ceramics in MgTiO3-Li2TiO3 system with linear temperature coefficient of resonant frequency [J]. Scripta Materialia, 2021, 205: 114185.
[18]
曲秀荣, 贾德昌. 微波介质陶瓷的研究进展 [J]. 硅酸盐通报, 2006, 25(6): 144‒147.
Qu X R, Jia D C. The recent progress of microwave dielectric ceramics [J]. Bulletin of the Chinese Ceramic Society, 2006, 25(6): 144‒147.
[19] Lou W C, Mao M M, Song K X, et al. Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications [J]. Journal of the European Ceramic Society, 2022, 42(6): 2820‒2826.
[20] Zhang L, Pu Y P, Chen M. Ultra-high energy storage performance under low electric fields in Na0.5Bi0.5TiO3 based relaxor ferroelectrics for pulse capacitor applications [J]. Ceramics International, 2020, 46(1): 98‒105.
[21] Li R T, Xu D M, Du C, et al. Giant dielectric tunability in ferroelectric ceramics with ultralow loss by ion substitution design [J]. Nature Communications, 2024, 15(1): 3754.
[22] Hill M D, Cruickshank D B. Ceramic materials for 5G wireless communication systems [J]. American Ceramic Society Bulletin, 2019, 98(6): 20‒25.
[23] Zhou D, Pang L X, Wang D W, et al. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture [J]. Journal of Materials Chemistry C, 2017, 5(38): 10094‒10098.
[24] Ni L Z, Li L X, Du M K. Ultra-high-Q and wide temperature stable Ba(Mg1/3Tax)O3 microwave dielectric ceramic for 5G-oriented dielectric duplexer adhibition [J]. Journal of Alloys and Compounds, 2020, 844: 156106.