登录

论文 视频 会议 专家

订阅 投稿

  • 首页
  • 学术期刊
  • 学术焦点
  • 学术视频
  • 工程成就
  • 工程前沿
  • 关于我们
期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

2016年 第17卷 第3期

大纲

摘要

关键词

《信息与电子工程前沿(英文)》 >> 2016年 第17卷 第3期 doi: 10.1631/FITEE.1500255

Local uncorrelated local discriminant embedding for face recognition

展示更多

1. School of Computer Science and Technology, Soochow University, Suzhou 215006, China.2. State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

发布日期 :2016-03-17

摘要

The feature extraction algorithm plays an important role in face recognition. However, the extracted features also have overlapping discriminant information. A property of the statistical uncorrelated criterion is that it eliminates the redundancy among the extracted discriminant features, while many algorithms generally ignore this property. In this paper, we introduce a novel feature extraction method called local uncorrelated local discriminant embedding (LULDE). The proposed approach can be seen as an extension of a local discriminant embedding (LDE) framework in three ways. First, a new local statistical uncorrelated criterion is proposed, which effectively captures the local information of interclass and intraclass. Second, we reconstruct the affinity matrices of an intrinsic graph and a penalty graph, which are mentioned in LDE to enhance the discriminant property. Finally, it overcomes the small-sample-size problem without using principal component analysis to preprocess the original data, which avoids losing some discriminant information. Experimental results on Yale, ORL, Extended Yale B, and FERET databases demonstrate that LULDE outperforms LDE and other representative uncorrelated feature extraction methods.

关键词

Feature extraction ; Local discriminant embedding ; Local uncorrelated criterion ; Face recognition

正文

网站版权所有 © 2015 《中国工程科学》杂志社有限责任公司

京公网安备 11010502051620号 京ICP备11030251号-2

关注我们

Follow us
网站版权所有 © 2015 《中国工程科学》杂志社有限责任公司
京公网安备 11010502051620号 京ICP备11030251号-2