登录

论文 视频 会议

订阅 投稿

  • 首页
  • 学术期刊
  • 学术焦点
  • 学术视频
  • 工程成就
  • 工程前沿
  • 联系我们
期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

2014年 第9卷 第4期

大纲

摘要

关键词

《机械工程前沿(英文)》 >> 2014年 第9卷 第4期 doi: 10.1007/s11465-014-0319-5

Multi-objective genetic algorithms based structural optimization and experimental investigation of the planet carrier in wind turbine gearbox

展示更多

School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

发布日期 :2014-12-19

摘要

To improve the dynamic performance and reduce the weight of the planet carrier in wind turbine gearbox, a multi-objective optimization method, which is driven by the maximum deformation, the maximum stress and the minimum mass of the studied part, is proposed by combining the response surface method and genetic algorithms in this paper. Firstly, the design points’ distribution for the design variables of the planet carrier is established with the central composite design (CCD) method. Then, based on the computing results of finite element analysis (FEA), the response surface analysis is conducted to find out the proper sets of design variable values. And a multi-objective genetic algorithm (MOGA) is applied to determine the direction of optimization. As well, this method is applied to design and optimize the planet carrier in a 1.5 MW wind turbine gearbox, the results of which are validated by an experimental modal test. Compared with the original design, the mass and the stress of the optimized planet carrier are respectively reduced by 9.3% and 40%. Consequently, the cost of planet carrier is greatly reduced and its stability is also improved.

关键词

planet carrier ; multi-objective optimization ; genetic algorithms ; wind turbine gearbox ; modal experiment

正文

关注我们

网站版权所有 © 2015 《中国工程科学》杂志社有限责任公司

京公网安备 11010502051620号 京ICP备11030251号-2
Follow us
网站版权所有 © 2015 《中国工程科学》杂志社有限责任公司
京公网安备 11010502051620号 京ICP备11030251号-2