期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2013年 第15卷 第2期

低温固体氧化物燃料电池电解质材料

中国科学院上海硅酸盐研究所,上海 200050

收稿日期 :2012-11-07 发布日期 :2013-01-28 10:49:15.000

下一篇 上一篇

摘要

低温化是固体氧化物燃料电池(SOFC)发电技术的重要发展趋势。SOFC工作温度的降低不仅可极大地降低材料及制备成本,更重要的是可极大地提高其长期运行的稳定性。电解质是SOFC的核心部件,可以采用电解质薄膜化或新型电解质材料来降低SOFC的工作温度。本文概述了目前被广泛研究的低温SOFC的电解质材料,并从其结构及性能出发,重点阐述了它们各自的优点和局限性。

图片

图1

图2

图3

图4

参考文献

[1]  Souza S D,Visco S J,Jonghe L C D. Reduced-temperature solid oxide fuel cell based on YSZ thin- film electrolyte[J]. Journal of Electrochemical Society,1997,144:35-37.

[2]  Souza R A D,Maier J. A computational study of cation defects in LaGaO3[J]. Physical Chemistry Chemical Physics,2003(5): 740-748. 链接1

[3]  Huang K,Goodenough J B. A solid oxide fuel cell based on Srand Mg-doped LaGaO3 electrolyte:The role of a rare-earth oxide buffer [J]. Journal of Alloys and Compounds,2000,303-304: 454-464. 链接1

[4]  Ishihara T,Akbay T,Furutani H,et al. Improved oxide ion conductivity of Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite type oxide [J]. Solid State Ionics,1998,113-115:585-591. 链接1

[5]  Baker R T,Gharbage B,Marques F M B. Ionic and electronic conduction in Fe and Cr doped (La,Sr)GaO3[J]. Journal of Electrochemical Society,1997,144:3130-3135.

[6]  Yamaji K,Horita T,Ishikawa M,et al. SOFC V[J]. Electrochemical Society,1997,97:1041.

[7]  Kim J H,Yoo H I. Partial electronic conductivity and electrolytic domain of La0.9Sr0.1Ga0.8 Mg0.2O3[J]. Solid State Ionics,2001, 140:105-113. 链接1

[8]  Bi Z,Yi B,Wang Z,et al. A high-performance anode-supported SOFC with LDC-LSGM bilayer electrolytes[J]. Electrochemical and Solid-State Letters,2004(7):105-107. 链接1

[9]  Lin Y,Barnett S A. Co-firing of anode-supported SOFCs with thin La0.9Sr0.1Ga0.8Mg0.2O3- δ electrolytes[J]. Electrochemical and SolidState Letters,2006(9):285-288.

[10]  GuoW,LiuJ,ZhangY.Electricalandstabilityperformanceofanodesupported solid oxide fuel cells with strontium- and magnesiumdoped lanthanum gallate thin electrolyte [J]. Electrochimica Acta,2008,53:4420-4427. 链接1

[11]  Zhan Z,Han D,Wu T,et al. A solid oxide cell yielding high power density below 600 ℃[J]. RSC Advances,2012(2):4075- 4078. 链接1

[12]  Zhan Z,Bierschenk D M,Cronin J S,et al. A reduced temperature solid oxide fuel cell with nanostructured anodes[J]. Energy & Environmental Science,2011(4):3951-3954. 链接1

[13]  Ishihara T,Yan J,Shinagawa M,et al. Ni-Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film[J]. Electrochimica Acta,2006, 52:1645-1650. 链接1

[14]  Steele B C H. Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 ℃ [J]. Solid State Ionics,2000,129:95-110. 链接1

[15]  Shao Z P,Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells [J]. Nature,2004,431:170. 链接1

[16]  Wang S,Katsuki M,Hashimoto T,et al. Expansion behavior of Ce1−yGdyO2.0−0.5y−δ under various oxygen partial pressures evaluated by HTXRD[J]. Journal of Electrochemical Society,2003, 150:952-958.

[17]  Maricle D L,Swarr T E,Karavolis S. Enhanced ceria—a lowtemperature SOFC electrolyte[J]. Solid State Ionics,1992,52: 173-182. 链接1

[18]  Vanier R N,Mairesse G,Abraham F,et al. Double substitutions in Bi4V2O11[J]. Solid State Ionics,1994,70/71:248-252. 链接1

[19]  Iwahara H,Esaka T,Uchida H,et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production[J]. Solid State Ionics,1981(3-4):359-363. 链接1

[20]  Nowick A S,Du Y. Influence of drying temperature on properties of Ni-MgO catalysts[J]. Solid State Ionics,1995,77:137-142.

[21]  Nowick A S,Du Y,Liang K C. Some factors that determine proton conductivity in nonstoichiometric complex perovskites [J]. Solid State Ionics,1999,125:303-311. 链接1

[22]  Fabbri E,Bi L,Pergolesi D,et al. Towards the next generation of solid oxide fuel cells operating below 600 ℃ with chemically stable proton- conducting electrolytes[J]. Advanced Materials, 2012,24:195-208. 链接1

[23]  Yamazaki Y,Sanchez R H,Haile S M. High total proton conductivity in large- grained yttrium- doped barium zirconate[J]. Chemistry of Materials,2009,21:2755-2762. 链接1

[24]  Fabbri E,Bi L,Tanaka H,et al. Chemically stable Pr and Y Co-doped barium zirconate electrolytes with high proton conductivity for intermediate- temperature solid oxide fuel cells [J]. Advanced Functional Materials,2011,21:158-166. 链接1

[25]  Kreuer K D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides[J]. Solid State Ionics,1999,125:285-302. 链接1

[26]  Haugsrud R,Norby T. High-temperature proton conductivity in acceptor- substituted rare- earth ortho- tantalates, LnTaO4 [J]. Journal of the American Ceramic Society,2007,90:1116- 1121. 链接1

[27]  Knee C S,Nyman B J. Protonic defects in pure and doped La2Zr2O7 pyrochlore oxide[J]. Solid State Ionics,2008,178: 1642-1647. 链接1

相关研究