期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2013年 第15卷 第2期

低温固体氧化物燃料电池的复合电解质材料

清华大学核能与新能源技术研究院,北京 100084

资助项目 :国家重点基础研究发展计划“973计划”资助项目(2012CB215401) 收稿日期: 2012-11-07 发布日期: 2013-01-28 10:49:15.000

下一篇 上一篇

摘要

固体氧化物燃料电池(SOFC)是一种高效、环保的发电装置。低温化是SOFC的主要发展方向。探索适合在低温(400~600 ℃)条件下操作的高性能电解质材料是SOFC低温化发展的关键。近年来,研究人员发展了新型的复合电解质材料,取得了较好的成果。本文综述了近年来低温SOFC复合电解质材料的研究进展,简要介绍了复合电解质材料的特点、类型和传导机理。

参考文献

[ 1 ] 毛宗强. 燃料电池[M]. 北京:化学工业出版社,2005.

[ 2 ] 衣宝廉. 燃料电池——原理•技术•应用[M]. 北京:化学工业 出版社,2004.

[ 3 ] 韩敏芳,彭苏萍. 固体氧化物燃料电池材料及制备[M]. 北京: 科学出版社,2004.

[ 4 ] Brett D,Atkinson A,Brandon N,et al. Intermediate temperature solid oxide fuel cells[J]. Chemical Society Reviews,2008, 37:1568-1578. 链接1

[ 5 ] Stambouli A B,Traversa E. Solid oxide fuel cells(SOFCs):A review of an environmentally clean and efficient source of energy [J]. Renewable and Sustainable Energy Reviews,2002,6:433- 455. 链接1

[ 6 ] 毛宗强,黄建兵,王 诚,等. 低温固体氧化物燃料电池研究进 展[J]. 电源技术,2008,32:75-79. 链接1

[ 7 ] Zhu B. Advantages of intermediate temperature solid oxide fuel cells for tractionary applications [J]. Journal of Power Sources, 2001,93:82-86. 链接1

[ 8 ] Hosomi T,Matsuda M,Miyake M. Electrophoretic deposition for fabrication of YSZ electrolyte film on non-conducting porous NiO-YSZ composite substrate for intermediate temperature SOFC [J]. Journal of the European Ceramic Society,2007,27:173-178. 链接1

[ 9 ] Chen Y Y,Wei W C. Processing and characterization of ultrathin yttria-stablized zirconia(YSZ)electrolytic films for SOFC[J]. Solid State Ionics,2006,177:351-357. 链接1

[10] Shim J H,Chao C C,Huang H,et al. Atomic layer deposition of yttria-stablized zirconia for solid oxide fuel cells[J]. Chemistry of Materials,2007,19:3850-3854.

[11] Steele B C H,Heinzel A. Materials for fuel- cell technologies [J]. Nature,2001,414:345-352. 链接1

[12] Liang C C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes[J]. Journal of the Electrochemical Society,1973,120:1289-1292. 链接1

[13] Zhu B. Functional ceria- salt- composite materials for advanced ITSOFC applications[J]. Journal of Power Sources,2003,114: 1-9. 链接1

[14] Huang J B,Mao Z Q,Yang L Z,et al. SDC-carbonate composite electrolytes for low-temperature SOFCs[J]. Electrochemical and Solid State Letters,2005(8):437-440.

[15] Huang J B,Yang L Z,Gao R F,et al. A high-performance ceramic fuel cell with samarium doped ceria-carbonate composite electrolyte at low temperatures[J]. Electrochemistry Communications,2006(8):785-789. 链接1

[16] Huang J B,Mao Z Q,Liu Z X,et al. Development of novel low-temperature SOFCs with co-ionic conducting SDC-carbonate composite electrolytes[J]. Electrochemistry Communications, 2007(9):2601-2605. 链接1

[17] Huang J B,Mao Z Q,Liu Z X,et al. Performance of fuel cells with proton-conducting ceria-based composite electrolyte and nickel-based electrodes[J]. Journal of Power Sources,2008,175: 238-243. 链接1

[18] Huang J B,Gao Z,Mao Z Q. Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs[J]. International Journal of Hydrogen Energy,2010,35:4270-4275. 链接1

[19] Sun W P,Jiang Y Z,Wang Y F,et al. A novel electronic current- blocked stable mixed ionic conductor for solid oxide fuel cells[J]. Journal of Power Sources,2011,196:62-68. 链接1

[20] Liu X R,Zhu B,Xu J,et al. Sulphate-ceria composite ceramics for energy environmental co-generation technology[C]// HighPerformance Ceramics III,PTS 1 and 2. Zurich-Uetikon:Trans Tech Publications Ltd.,2005. 链接1

[21] Zhu B. Functional ceria- salt- composite materials for advanced ITSOFC applications[J]. Journal of Power Sources,2003,114: 1-9. 链接1

[22] Zhu B,Bai X Y,Chen G X,et al. Fundamental study on biomass-fuelled ceramic fuel cell[J]. International Journal of Energy Research,2002,26:57-66. 链接1

[23] Zhu B. Advanced hybrid ion conducting ceramic composites and applications in new fuel cell generation[J]. Key Engineering Materials,2005,280-283:413-418. 链接1

[24] Zhu B,Liu X R,Zhou P,et al. Cost-effective yttrium doped ceria-based composite ceramic materials for intermediate temperature solid oxide fuel cell applications[J]. Journal of Materials Science Letters,2001,20:591-594. 链接1

[25] Zhu B,Liu X,Sun M,et al. Calcium doped ceria-based materials for cost-effective intermediate solid oxide fuel cells[J]. Solid State Science,2003,5:1127-1134. 链接1

[26] Huang J,Yang L,Mao Z. High performance low temperature ceramic fuel cell with zinc doped ceria- carbonates composite electrolyte[J]. Key Engineering Materials,2007,336- 338: 413-416. 链接1

[27] Zhu B,Liu X,Sun J. Fuel cell studies using the CeO2- La2O3 based electrolytes[J]. Key Engineering Materials,2007,336- 338:490-493. 链接1

[28] Zhu B,Liu X,Zhu Z,et al. Solid oxide fuel cell(SOFC)using industrial grade mixed rare-earth oxide electrolytes[J]. International Journal of Hydrogen Energy,2008,33:3385-3392. 链接1

[29] Zhu B,Mellander B. Proton conduction in salt-ceramic composite systems[J]. Solid State Ionics,1995,77:244-249. 链接1

[30] Li J,Luo J L,Chuang K T,et al. Proton conductivity and chemical stability of Li2SO4 based electrolyte in a H2S- air fuel cell[J]. Journal of Power Sources,2006,160:909-914. 链接1

[31] Zhu B,Mellander B. Intermediate temperature fuel cells with electrolytes based on oxyacid salts[J]. Journal of Power Sources, 1994,52:289-293. 链接1

[32] Wang X D,Ma Y,Raza R,et al. Novel core-shell SDC/amorphous Na2CO3 nanocomposite electrolytefor low- temperature SOFCs[J]. Electrochemistry Communications,2008,10:1617- 1620. 链接1

[33] Raza R,Wang X D ,Ma Y,et al. Improved ceria- carbonate composite electrolytes[J]. International Journal of Hydrogen Energy,2010,35:2684-2688. 链接1

[34] Ma Y,Wang X D,Raza R,et al. Thermal stability study of SDC/Na2CO3 nanocomposite electrolyte for low- temperature SOFCs[J]. International Journal of Hydrogen Energy,2010, 35:2580-2585. 链接1

[35] Raza R,Wang X D,Ma Y,et al. Study on calcium and samarium co- doped ceria based nanocomposite electrolytes[J]. Journal of Power Sources,2010,195:6491-6495. 链接1

[36] Lunden A,Mellander B,Zhu B. Mobility of protons and oxide ions in lithium sulphate and oxyacid salts[J]. Acta Chemica Scandinavica,1991,45:981-985. 链接1

[37] Tarneberg R,Lunden A. Ion diffusion in the high-temperature phases Li2SO4,LiNaSO4,LiAgSO4 and Li4Zn(SO4)3[J]. Solid State Ionics,1996,90:209-220. 链接1

[38] Xia C,Li L,Tian Y,et al. A high performance composite ionic conducting electrolyte for intermediate temperature fuel cell and evidence for ternary ionic conduction[J]. Journal of Power Sources,2009,188:156-162. 链接1

[39] Zhu W,Xia C R,Ding D,et al. Electrical properties of ceriacarbonate composite electrolytes[J]. Materials Research Bulletin, 2006,41:2057-2064. 链接1

[40] Zhu B,Albinsson I,Andersson C,et al. Electrolysis studies based on ceria-based composites[J]. Electrochemistry Communications,2006(8):495-498. 链接1

[41] Zhu B. Proton and oxygen ion-mixed-conducting ceramic composites and fuel cells[J]. Solid State Ionics,2001,145:371- 380. 链接1

[42] Li S,Wang X D,Zhu B. Novel ceramic fuel cell using nonceria-based composites as electrolyte[J]. Electrochemistry Communications,2007,9:2863-2866. 链接1

[43] Zhu B,Yang X T,Xu J,et al. Innovative low temperature SOFCs and advanced materials[J]. Journal of Power Sources, 2003,118:47-53. 链接1

[44] Zhu B,Mat M. Studies on dual phase ceria-based composites in electrochemistry[J]. International Journal of Electrochemical Science,2006(1):384-402. 链接1

[45] Zhu B,Li S,Mellander B. Theoretical approach on ceria-based two-phase electrolytes for low temperature(300~600 ℃)solid oxide fuel cells[J]. Electrochemistry Communications,2008 (10):302-305. 链接1

相关研究