期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2013年 第15卷 第2期

碳基固体氧化物燃料电池理论模拟概述

中国科学技术大学物理系, 合肥 230026

资助项目 :国家重点基础研究发展计划“973计划”资助项目(2012CB215405) 收稿日期: 2012-11-15 发布日期: 2013-01-28 10:49:15.000

下一篇 上一篇

摘要

主要对碳基固体氧化物燃料电池(SOFC)中三传二反的控制方程、不同尺度的不同物理场理论模型以及碳基燃料的重整、催化和硫化等方面进行概括总结。SOFC有可使用氢气、一氧化碳、甲烷和其他的碳氢化合物作为燃料进行电化学反应的燃料灵活性,但使用碳氢燃料需要解决诸如碳基燃料的重整、电极的催化、积碳和硫化等问题。电池内部反应气体的物质输运、电荷输运、能量输运、动量输运和化学及电化学反应状态均可以用偏微分方程来描述。运用这些电化学反应和输运的偏微分方程,结合材料的微观性质,可以建立SOFC的多尺度多物理场模型。通过理论模型研究材料微结构与性质、工作条件、几何构型等参数对电池性能的影响,对SOFC材料组成与电池堆结构进行定量分析和优化设计,可以加速SOFC技术的更快发展。

参考文献

[ 1 ] Larminie J,Dicks A K. Fuel Cell Systems Explained [M]. USA: Wiley,2003.

[ 2 ] Carter E A. Challenges in modeling materials properties without experimental input [J]. Science,2008,321:800-803. 链接1

[ 3 ] Peters R,Dahl R,Klüttgen U,et al. Internal reforming of methane in solid oxide fuel cell systems [J]. Journal of Power Sources,2002,106:238-244. 链接1

[ 4 ] Kakaç S,Pramuanjaroenkij A,Zhou X Y. A review of numerical modeling of solid oxide fuel cell [J]. Int J Hydrogen Energ, 2007,32:761-786. 链接1

[ 5 ] Mogensen M,Kammer K. Conversion of hydrocarbons in solid oxide full cells [J]. Annual Review of Materials Research,2003, 33:321-331. 链接1

[ 6 ] Lehnert W,Meusinger J,Thom F. Three dimensional CFD model of a planar solid oxide electrolysis cell for Co- electrolysis of steam and carbon dioxide [J]. Journal of Power Sources,2000, 87:57-63. 链接1

[ 7 ] Klein J M,Bultel Y,Georges S,et al. Modeling comparison of high temperature fuel cell performance:electrochemical behaviours of SOFC and PCFC [J]. Chemical Engineering Science, 2007,62:1636-1649. 链接1

[ 8 ] Park S,Vohs J M,Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell [J]. Nature,2000,404:265-267. 链接1

[ 9 ] Zhou Z F,Gallo C,Pague M B,et al. Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuel cell [J]. Journal of Power Sources,2004,133:181-187. 链接1

[10] Andersson M,Yuan J,Sundén B. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells [J]. Applied Energy,2010, 87:1461-1476. 链接1

[11] Bove R,Ubertini S. Modeling solid oxide fuel cell operation: Approaches,techniques and results [J]. Journal of Power Sources,2006,159:543-559. 链接1

[12] Bi W,Chen D,Lin Z. A key geometric parameter for the flow uniformity in planar solid oxide fuel cell stacks [J]. International Journal of Hydrogen Energy,2009,34:3873-3884. 链接1

[13] Bi W,Li J,Lin Z. Flow uniformity optimization for large size planar solid oxide fuel cells with U- type parallel channel designs [J]. Journal of Power Sources,2010,195:3207-3214. 链接1

[14] Mauri R. A new application of the reciprocity relations to the study of fluid-flows through fixed beds [J]. Journal of Engineering Mathematics,1998,33:103-112. 链接1

[15] Haberman B,Young J. Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell [J]. International Journal of Heat and Mass Transfer,2004,47:3617-3629. 链接1

[16] Le Bars M,Worster M. Interfacial conditions between a pure fluid and a porous medium:Implications for binary alloy solidification [J]. Journal of Fluid Mechanics,2006,550:149-173. 链接1

[17] Janardhanan V M,Deutschmann O. Numerical study of mass and heat transport in solid- oxide fuel cells running on humidified methane [J]. Chemical Engineering Science,2007,62: 5473-5486. 链接1

[18] Dokamaingam P,Assabumrungrat S,Soottitantawat A,et al. Modeling of SOFC with indirect internal reforming operation: Comparison of conventional packed- bed and catalytic coatedwall internal reformer [J]. International Journal of Hydrogen Energy,2009,34:410-421. 链接1

[19] Autissier N,Larrain D,Favrat D. CFD simulation tool for solid oxide fuel cells [J]. Journal of Power Sources,2004,131:313-319. 链接1

[20] Incropera F P,Bergman T L,Lavine A S,et al. Fundamentals of Heat and Mass Transfer [M]. USA:Wiley,2011.

[21] David L,Damm,Andrei G,et al. Radiation heat transfer in SOFC materials and components [J]. Journal of Power Sources, 2005,143:158-165. 链接1

[22] Khanna T,Palepu K. Why focused strategies may be wrong for emerging markets [J]. Harvard Business Review,1997,75:41- 51. 链接1

[23] Suwanwarangkul R,Croiset E,Entchev E,et al. Experimental and modeling study of solid oxide fuel cell operating with syngas fuel [J]. Journal of Power Sources,2006,161:308-322. 链接1

[24] O’Hayre R,Cha S W,Colella W,et al. Fuel Cell Fundamentals [M]. USA:John Wiley & Sons,2006.

[25] Kemm M. Dynamic Solid Oxide Fuel Cell Modelling for Nonsteady State Simulation of System Applications [M]. Sweden: Faculty of Engineering,LTH Department of Energy Sciences Division of Thermal Power Engineering,2006.

[26] Aloui T,Halouani K. Analytical modeling of polarizations in a solid oxide fuel cell using biomass syngas product as fuel [J]. Applied Thermal Engineering,2007,27:731-737. 链接1

[27] Greeley J,Nørskov J K,Mavrikakis M. Electronic structure and catclysis on metal surfaces [J]. Annual Review of Physical Chemistry,2002,53:319-348. 链接1

[28] Choi Y,Lin M C,Liu M. Computational study on the catalytic mechanism of oxygen reduction on La0.5Sr0.5MnO3 in solid oxide fuel cells [J]. Angewandte Chemie International Edition,2007, 46:7214-7219. 链接1

[29] Choi Y,Lin M C,Liu M. Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations [J]. Journal of Power Sources,2010,195:1441-1445. 链接1

[30] Grabow L,Gokhale A,Evans S,et al. Mechanism of the water gas shift reaction on Pt:First principles,experiments,and microkinetic modeling [J]. The Journal of Physical Chemistry C, 2008,112:4608-4617. 链接1

[31] Jones G,Jakobsen J G,Shim S S,et al. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts [J]. Journal of Catalysis,2008, 259:147-160. 链接1

[32] Yu J H,Park G W,Lee S,et al. Microstructural effects on the electrical and mechanical properties of Ni- YSZ cermet for SOFC anode [J]. Journal of Power Sources,2007,163:926-932. 链接1

[33] Chen D,Bi W,Kong W,et al. Combined micro-scale and macroscale modeling of the composite electrode of a solid oxide fuel cell [J]. Journal of Power Sources,2010,195:6598-6610. 链接1

[34] Chen D,Lin Z,Zhu H,et al. Percolation theory to predict effective properties of solid oxide fuel- cell composite electrodes [J]. Journal of Power Sources,2009,191:240-252. 链接1

[35] Schneider L,Martin C,Bultel Y,et al. Percolation effects in functionally graded SOFC electrodes [J]. Electrochimica Acta, 2007,52:3190-3198. 链接1

[36] Ali A,Wen X,Nandakumar K,et al. Geometrical modeling of microstructure of solid oxide fuel cell composite electrodes [J]. Journal of Power Sources,2008,185:961-966. 链接1

[37] Kenney B,Valdmanis M,Baker C,et al. Computation of TPB length,surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes [J]. Journal of Power Sources,2009,189:1051-1059. 链接1

[38] Wilson J R,Kobsiriphat W,Mendoza R,et al. Three-dimensional reconstruction of a solid-oxide fuel-cell anode [J]. Nature Materials,2006,5:541-544. 链接1

[39] Wilson J R, Barnett S A. Effect of composition of (La0.8Sr0.2MnO3- Y2O3- stabilized ZrO2) cathodes:Correlating three-dimensional microstructure and polarization resistance [J]. Journal of Power Sources,2010,195:1829-1840. 链接1

[40] Guan Y,Li W,Gong Y,et al. Analysis of the three-dimensional microstructure of a solid-oxide fuel cell anode using nano X-ray tomography [J]. Journal of Power Sources,2011,196:1915- 1919. 链接1

[41] Iwai H. Quantification of SOFC anode microstructure based on dual beam FIB- SEM technique [J]. Journal of Power Sources, 2009,195:955-961. 链接1

[42] Yakabe H,Hishinuma M,Uratani M,et al. Evaluation and modeling of performance of anode- supported solid oxide fuel cell [J]. Journal of Power Sources,2000,86:423-431. 链接1

[43] Lin Z,Stevenson J W,Khaleel M A. The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs [J]. Journal of Power Sources,2003,117:92-97. 链接1

[44] Liu S,Song C,Lin Z. The effects of the interconnect rib contact resistance on the performance of planar solid oxide fuel cell stack and the rib design optimization [J]. Journal of Power Sources,2008,183:214-225. 链接1

[45] Khaleel M,Rector D,Lin Z,et al. Multiscale electrochemistry modeling of solid oxide fuel cells [J].International Journal for Multiscale Computational Engineering,2005,3:33-48 链接1

[46] Hussain M,Li X,Dincer I. Multi- component mathematical model of solid oxide fuel cell anode [J]. International Journal of Energy Research,2005,29:1083-1101. 链接1

[47] Hussain M M,Li X,Dincer I. A numerical investigation of modeling an SOFC electrode as two finite layers [J]. International Journal of Hydrogen Energy,2009,34:3134-3144. 链接1

[48] Jeon D H,Nam J H,Kim C J. Microstructural optimization of anode- supported solid oxide fuel cells by a comprehensive microscale model [J]. Journal of The Electrochemical Society, 2006,153:A406-A417.

[49] Liu S,Kong W,Lin Z. A microscale modeling tool for the design and optimization of solid oxide fuel cells [J]. Energies, 2009,2:427-444. 链接1

[50] Weisheng X,Yunzhen Y,Qiusheng W. Effects of operations and structural parameters on the one- cell stack performance of planar solid oxide fuel cell [J]. J Power Sources,2009,189: 886-898. 链接1

[51] Suwanwarangkul R,Croiset E,Fowler M W,et al. Performance comparison of Fick’s,Dusty- gas and Stefan- Maxwell models to predict the concentration overpotential of a SOFC anode [J]. Journal of Power Sources,2003,122:9-18. 链接1

[52] Hussain M M,Li X,Dincer I. Mathematical modeling of transport phenomena in porous SOFC anodes [J]. International Journal of Thermal Sciences,2007,46:48-56. 链接1

[53] Tseronis K,Kookos I K,Theodoropoulos C. Modelling mass transport in solid oxide fuel cell anodes:A case for a multidimensional dusty gas- based model [J]. Chemical Engineering Science,2008,63:5626-5638. 链接1

[54] Yuan J,Huang Y,Sundén B,et al. Analysis of parameter effects on chemical reaction coupled transport phenomena in SOFC anodes [J]. Heat and Mass Transfer,2009,45:471-484. 链接1

[55] Huang C M,Shy S S,Lee C H. Performance measurements of a single-cell stack using various designs of flow distributors for planar SOFC [J]. J Power Sources,2008,183:205-213.

[56] Larrain D,Favrat D. Simulation of SOFC stack and repeat elements including interconnect degradation and anode reoxidation risk [J]. Journal of Power Sources,2006,161:392-403. 链接1

[57] Magistri L,Traverso A,Cerutti F,et al. Modelling of pressurised hybrid systems based on integrated planar solid oxide fuel cell(IP-SOFC)technology [J]. Fuel Cells,2005(5):80-96. 链接1

[58] Burt A,Celik I,Gemmen R.A numerical study of cell-to-cell variations in a SOFC stack [J]. Journal of Power Sources, 2004,126:76-87. 链接1

[59] Recknagle K P,Williford R E,Chick L A,et al. Three dimensional thermo- fluid electrochemical modeling of planar SOFC stacks [J]. Journal of Power Sources,2003,113:109-114. 链接1

[60] Kulikovsky A. Temperature and current distribution along the air channel in planar SOFC stack:Model and asymptotic solution [J]. Journal of Fuel Cell Science and Technology,2010, 7:011015-011020. 链接1

[61] Lin C K,Chen T T,Chyou Y P,et al. Thermal stress analysis of a planar SOFC stack [J]. Journal of Power Sources,2007, 164:238-251. 链接1

[62] Li P W,Chyu M K. Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack [J]. Journal of Power Sources,2003,124:487-498. 链接1

[63] Boersma R J,Sammes N M. Computational analysis of the gasflow distribution in solid oxide fuel cell stacks[J]. J Power Sources,1996,63:215-219. 链接1

[64] Georges S,Parrour G,Henault M,et al. Gradual internal reforming of methane:A demonstration[J]. Solid State Ionics, 2006,177:2109-2112.

[65] Liu D J,Kaun T D,Liao H K,et al. Characterization of kilowatt- scale autothermal reformer for production of hydrogen from heavy hydrocarbons [J]. International Journal of Hydrogen Energy,2004,29:1035-1046. 链接1

[66] Xu J,Froment G F. Methane steam reforming,methanation and water- gas shift:I. intrinsic kinetics [J]. AIChE Journal, 1989,35:88-96. 链接1

[67] Rostrup- Nielsen J R. Equilibria of decomposition reactions of carbon monoxide and methane over nickel catalysts [J]. Journal of Catalysis,1972,27:343-356. 链接1

[68] Ivers-Tiffée E,Weber A,Herbstritt D. Materials and technologies for SOFC-components [J]. Journal of the European Ceramic Society,2001,21:1805-1811. 链接1

[69] Ferreira-Aparicio D P,Benito M,Sanz J. New trends in reforming technologies:from hydrogen industrial plants to multifuel microreformers [J]. Catalysis Reviews,2005,47:491-588. 链接1

[70] Blaylock D,Ogura T,Greenet W,et al. Computational investigation of thermochemistry and kinetics of steam methane reforming on Ni(111)under realistic conditions [J]. The Journal of Physical Chemistry C,2009,113:4898-4908. 链接1

[71] Achenbach E,Riensche E. Methane/steam reforming kinetics for solid oxide fuel cells [J]. Journal of Power Sources,1994, 52:283-288. 链接1

[72] Rostrup-Nielsen J R. Sulfur-passivated nickel catalysts for carbon- free steam reforming of methane [J]. Journal of Catalysis, 1984,85:31-43. 链接1

[73] Ahmed K,Foger K. Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells [J]. Catalysis Today,2000,63:479-487. 链接1

[74] Boder M,Dittmeyer R. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas [J]. Journal of Power Sources, 2006,155:13-22. 链接1

[75] Brett D J L,Atkinson A,Brandon N P,et al. Intermediate temperature solid oxide fuel cells [J]. Chem Soc Rev,2008,37: 1568-1578. 链接1

[76] Tietz F,Buchkremer H P,Stöver D. 10 years of materials research for solid oxide fuel cells at Forschungszentrum Jülich [J]. Journal of Electroceramics,2006,17:701-707. 链接1

[77] Rostrup-Nielsen J,Hansen J,Helveg S,et al. Sites for catalysis and electrochemistry in solid oxide fuel cell(SOFC)anode [J]. Applied Physics A:Materials Science & Processing,2006, 85:427-430. 链接1

[78] Wang W,Zhou W,Ran R,et al. Methane- fueled SOFC with traditional nickel- based anode by applying Ni/Al2O3 as a dualfunctional layer [J]. Electrochemistry Communications,2009, 11:194-197. 链接1

[79] Resini C,Concepción Herrera Delgado M,Presto S,et al. Yttria-stabilized zirconia(YSZ)supported Ni-Co alloys(precursor of SOFC anodes)as catalysts for the steam reforming of ethanol [J]. International Journal of Hydrogen Energy,2008,33: 3728-3735. 链接1

[80] Murray E P,Tsai T,Barnett S. A direct-methane fuel cell with a ceria-based anode [J]. Nature,1999,400:649-651. 链接1

[81] Park S,Craciun R,Vohs J M,et al. Direct oxidation of hydrocarbons in a solid oxide fuel cell:I. methane oxidation [J]. Journal of the Electrochemical Society,1999,146:3603-3605. 链接1

[82] Iida T,Kawano M,Matsui T,et al. Internal reforming of SOFCs carbon deposition on fuel electrode and subsequent deterioration of cell [J]. Journal of the Electrochemical Society,2007,154: B234-B241.

[83] Sehested J. Four challenges for nickel steam-reforming catalysts [J]. Catalysis Today,2006,111:103-110. 链接1

[84] Ke K,Gunji A,Mori H,et al. Effect of oxide on carbon deposition behavior of CH4 fuel on Ni/ScSZ cermet anode in high temperature SOFCs [J]. Solid State Ionics,2006,177:541-547. 链接1

[85] Sangtongkitcharoen W,Assabumrungrat S,Pavarajarn V,et al. Comparison of carbon formation boundary in different modes of solid oxide fuel cells fueled by methane [J]. Journal of Power Sources,2005,142:75-80. 链接1

[86] Laosiripojana N,Assabumrungrat S. Catalytic steam reforming of methane,methanol,and ethanol over Ni/YSZ:the possible use of these fuels in internal reforming SOFC [J]. Journal of Power Sources,2007,163:943-951. 链接1

[87] Bengaard H S,Nørskov J K,Sehested J,et al. Steam reforming and graphite formation on Ni catalysts [J]. Journal of Catalysis,2002,209:365-384. 链接1

[88] Koh J H,Yoo Y S,Park J W,et al. Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel [J]. Solid State Ionics,2002,149:157-166. 链接1

[89] Lin Y,Zhan Z,Liu J,et al. Direct operation of solid oxide fuel cells with methane fuel [J]. Solid State Ionics,2005,176: 1827-1835. 链接1

[90] Kreuer K. Proton-conducting oxides [J]. Annual Review of Materials Research,2003,33:333-359. 链接1

[91] Yu X,Ye S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC:Part I. physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst [J]. Journal of Power Sources,2007,172:133-144. 链接1

[92] Hansen J B. Correlating sulfur poisoning of SOFC nickel anodes by a temkin isotherm [J]. Electrochemical and Solid-State Letters,2008(11):B178-B180. 链接1

[93] Hrovat M,Katsarakis N,Reichmann K,et al. Characterisation of LaNi1 − xCoxO3 as a possible SOFC cathode material [J]. Solid State Ionics,1996,83:99-105. 链接1

[94] Sohn S B,Choi S Y,Kim G H,et al. Stable sealing glass for planar solid oxide fuel cell [J]. Journal of Non- crystalline Solids,2002,297:103-112. 链接1

相关研究