期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2013年 第15卷 第2期

质子导体燃料电池阴极材料的研究及发展概述

中国科学技术大学材料系,中国科学院能量转换材料重点实验室,合肥 230026

资助项目 :国家重点基础研究发展计划“973计划”资助项目(2012CB215403) 收稿日期: 2012-11-07 发布日期: 2013-01-28 10:49:15.000

下一篇 上一篇

摘要

能源危机和环境污染是全世界在可持续发展道路中所面临的难题。固体氧化物燃料电池(SOFC)具有高能量转化效率和低污染排放,被认为是未来能源经济的基石。其中,以质子导体作为电解质的固体氧化物燃料电池(H-SOFC)由于具有高燃料利用率、高理论电动势、高离子迁移数以及低传导活化能,因而备受关注。然而,与氧离子导体固体氧化物燃料电池(O-SOFC)相比,H-SOFC的材料选择和理论体系还处于初级阶段,尤其是H-SOFC的阴极。在H-SOFC中,氢气在阳极被氧化,形成质子,通过电解质迁移到阴极,而后与氧进行电极反应生成水,其阴极的电极过程比O-SOFC更为复杂。寻找高性能的阴极材料和探索H-SOFC中的阴极反应机理,对于H-SOFC的发展具有重要的意义。围绕质子导体阴极材料的发展进行深入调研,着重阐述和总结了不同传导类型的阴极材料的电化学行为及其反应模型,为H-SOFC阴极材料的发展和应用提供了一种思路。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] 毛宗强. 关注氢能源——21世纪最具发展潜力的能源[J]. 科技 中国,2004(11):28-33.

[ 2 ] 衣宝廉. 电子书燃料电池——原理、技术与应用[M]. 北京:化学 工业出版社,2003.

[ 3 ] Kreuer K D. Proton-conducting oxides [J]. Annual review of materials research,2003,33:333-359. 链接1

[ 4 ] Patil A S,Dubois T G,Sifer N,et al.Portable fuel cell systems for America’s army:Technology transition to the field[J]. Journal of Power Sources,2004,136:220-225. 链接1

[ 5 ] Mukundan R,Davies P K,Worrell W L. Electrochemical characterization of mixed conducting Ba(Ce0.8–yPryGd0.2)O2.9 cathodes[J]. Journal of the Electrochemical Society,2001,148:A82-A86.

[ 6 ] 蒋治亿. 中温固体氧化物燃料电池的阴极材料和阴极过程[D]. 合肥:中国科学技术大学,2011. 链接1

[ 7 ] Carter S,Selcuk A,Chater R J,et al. Oxygen-transport in selected nonstoichiometric perovskite- structure oxides[J]. Solid State Ionics,1992,53(6):597-605. 链接1

[ 8 ] Yamaura H,Ikuta T,Yahiro H,et al. Cathodic polarization of strontium-doped lanthanum ferrite in proton-conducting solid oxide fuel cell[J]. Solid State Ionics,2005,176:269-274. 链接1

[ 9 ] Zhao F,Peng R R,Xia C R. A La0.6Sr0.4CoO3- δ- based electrode wit high durability for intermediate temperature solid oxide fuel cells [J]. Materials Research Bulletin,2008,43:370-376. 链接1

[10] Shao Z P,Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells [J].Nature,2004,431:170-173. 链接1

[11] Lin Y,Ran R,Zheng Y,et al. Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a potential cathode for an anode-supported proton-conducting solid- oxide fuel cell Original Research Article[J]. Journal of Power Sources,2008,180:15-22. 链接1

[12] Lin Y,Ran R,Chen D J,et al. A novel Ba0.6Sr0.4Co0.9Nb0.1O3 − δ cathode for protonic solid- oxide fuel cells[J]. Journal of Power Sources,2010,195:4700-4703. 链接1

[13] Lin Y,Zhou W,Sunarso J,et al. Characterization and evaluation of BaCo0.7Fe0.2Nb0.1O3−δ,as a cathode for proton-conducting solid oxide fuel cells[J] .International Journal of Hydrogen Energy,2012,37:484-497. 链接1

[14] Ding H P,Lin B,Liu X Q,et al. High performance protonic ceramic membrane fuel cells(PCMFCs)with Ba0.5Sr0.5Zn0.2Fe0.8O3−δ perovskite cathode [J]. Electrochemistry Communications, 2008,10:1388-1391. 链接1

[15] Taskin A A,Lavrov A N,Ando Y. Achieving fast oxygen diffusion in perovskites by cation ordering[J]. Applied Physics Letters,2005,86:091910-3. 链接1

[16] Zhang K,Ge L,Ran R,et al. Synthesis,characterization and evaluation of cation- ordered LnBaCo2O5 + d as materials of oxygen permeation membranes and cathodes of SOFCs[J]. Acta Materialia,2008,56:4876-4889. 链接1

[17] Lin B,Zhang S Q,Zhang L C,et al. Prontonic ceramic membrane fuel cells with layered GdBaCo2O5 + x cathode prepared by gel-casting and suspension spray[J]. Journal of Power Sources, 2008,177:330-333. 链接1

[18] Lin B,Dong Y C,Yan R Q,et al. In situ screen- printed BaZr0.1Ce0.7Y0.2O3−δ electrolyte-based protonic ceramic membrane fuel cells with layered SmBaCo2O5+x cathode[J]. Journal of Power Sources,2009,186:446-449. 链接1

[19] Zhao L,He B B,Lin B,et al. High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+δ cathode [J]. Journal of Power Sources,2009,194:835-837. 链接1

[20] Lin Y,Ran R,Zhang C,et al. 2010,Performance of PrBaCo2O5 + δ as a proton-conducting solid-oxide fuel cell cathode[J]. Journal of Physical Chemistry A,114,3764-3772. 链接1

[21] Nian Q,Zhao L,He B B,et al. Layered SmBaCuCoO5 + δ and SmBaCuFeO5+ δ perovskite oxides as cathode materials for proton-conducting SOFCs[J]. Journal of Alloys and Compounds, 2010,492:291-294. 链接1

[22] Ling Y H,Zhao L,Lin B,et al. Layered perovskite LaBaCuMO5+x(M = Fe,Co)cathodes for intermediate-temperature protonic ceramic membrane fuel cells [J]. Journal of Alloys and Compounds,2010,493,252-255. 链接1

[23] Ding H P,Xue X J. Proton conducting solid oxide fuel cells with layered PrBa0.5Sr0.5Co2O5 + δ perovskite cathode [J]. International Journal of Hydrogen Energy,2010,35:2486-2490. 链接1

[24] Ding H P,Xue X J,Liu X Q,et al. A novel layered perovskite cathode for proton conducting solid oxide fuel cells [J]. Journal of Power Sources,2010,195:3775-3778. 链接1

[25] Kim J H,Manthiram A. Low thermal expansion RBa(Co,M)4O7 cathode materials based on tetrahedral-site cobalt ions for solid oxide fuel cells[J]. Chem. Mater,2010,22:822-831. 链接1

[26] Wang H,Tao Z T,Liu W. Electrochemical characterization of YBaCo3ZnO7+δ as a stable proton-conducting SOFCs cathode[J]. Ceramics International,2012,38:1737-1740. 链接1

[27] Fabbri E,Oh T,Licoccia S,et al. Mixed protonic/electronic conductor cathodes for intermediate temperature SOFCs based on proton conducting electrolytes[J]. Journal of the Electrochemical Society,2009,156:B38-B45.

[28] Mukundan R,Davies P K,Worrel W L. Electrochemical characterization of mixed conducting Ba(Ce0.8–yPryGd0.2 )O2.9 cathodes [J]. Journal of the Electrochemical Society,2001,148:A82-A86.

[29] Mukundan R,Davies P K,Worrell W L. Electrochemical characterization of mixed conducting Ba(Ce0.8-yPryGd0.2)O2.9 cathodes [J]. Journal of the electrochemical society,2001,148:A82-A86.

[30] Hui Z,Michele P. Preparation,chemical stability,and electrical properties of Ba(Ce1–xBix )O(3 x=0.0~0.5)[J]. Journal of Materials Chemistry,2002,12:3787-3791. 链接1

[31] Tao Z T,Bi L,Yan L T,et al. A novel single phase cathode material for a proton-conducting SOFC[J]. Electrochemistry Communications,2009,11:688-690. 链接1

[32] Tao Z T,Bi L,Zhu Z W,et al. Novel cobalt-free cathode materials BaCexFe1−xO3−δ for proton-conducting solid oxide fuel cells [J]. Journal of Power Sources,2009,194:801-804. 链接1

[33] Fabbri E,Licoccia S,Traversa E,et al. Composite cathodes forprotonconductingelectrolytes[J]. FuelCells,2009,9:128-138. 链接1

[34] Wu T,Peng R,Xia C. Sm0.5Sr0.5CoO3 − δ-BaCe0.8Sm0.2O3- δ composite cathodes for proton-conducting solid oxide fuel cells [J]. Solid State Ionics,2008,179:1505-1508. 链接1

[35] Lin B,Ding H,Dong Y,et al. Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba0.5Sr0.5Co0.8Fe0.2O3- δ- BaZr0.1Ce0.7Y0.2O3- δ composite cathode[J]. Journal of Power Sources,2009,186:58-61. 链接1

[36] LuX,DingY,ChenY.Ba0.5Sr0.5Zn0.2Fe0.8O3−δ-BaCe0.5Zr0.3Y0.16Zn0.04O3−δcomposite cathode for proton-conducting solid oxide fuel cells [J]. Journal of Alloys and Compounds,2009,484,856-859. 链接1

[37] Yang L,Zuo C,Wang S,et al. A novel composite cathode for low- temperature SOFCs based on oxide proton conductors[J]. Advanced Materials,2008,20:3280-3283. 链接1

[38] Yang L,Wang S Z,Lou X Y,et al. Electrical conductivity and electrochemical performance of cobalt- doped BaZr0.1Ce0.7Y0.2O3 cathode[J]. International Journal of Hydrogen Energy,2011, 36:2266-2270. 链接1

[39] Zhao F,Wang S W,Brinkman K,et al. Layered perovskite PrBa0.5Sr0.5Co2O5 as high performance cathode for solid oxide fuel cells using oxide proton-conducting electrolyte[J]. Journal of Power Sources,2010,195:5468-5473. 链接1

[40] Jiang S P. A review of wet impregnation—An alternative method for the fabrication of high performance and nano- structured electrodes of solid oxide fuel cell[J]. Materials Science and Engineering,2006,418:A199-A210. 链接1

[41] Sholklapper T Z,Kurokawa H,Jacobson C P,et al. Nanostructured solid oxide fuel cell electrodes[J]. Nano letters,2007(7): 2136-2141. 链接1

[42] Zhao F,Liu Q,Wang S W,et al. Infiltrated multiscale porous cathode for proton-conducting solid oxide fuel cells[J]. Journal of Power Sources,2011,196:8544-8548. 链接1

[43] Sun W P,Yan L T,Lin B,et al. High performance protonconducting solid oxide fuel cells with a stable Sm0.5Sr0.5Co3- Ce0.8Sm0.2O2 composite cathode[J]. Journal of Power Sources, 2010,195:3155-3158. 链接1

[44] Sun W P,Shi Z,Fang S M,et al. A high performance BaZr0.1Ce0.7Y0.2O3-based solid oxide fuel cell with a cobalt- free Ba0.5Sr0.5FeO3-Ce0.8Sm0.2O2 composite cathode[J]. International Journal of Hydrogen Energy,2010,35:7925-7929.

[45] Sun W P, Zhu Z W, Jiang Y Z, et al. Optimization of BaZr0.1Ce0.7Y0.2O3 based proton-conducting solid oxide fuel cells with a cobalt- free proton- blocking La0.7Sr0.3FeO3- Ce0.8Sm0.2O2 composite cathode[J]. International Journal of Hydrogen Energy,2011,36:9956-9966. 链接1

[46] Ling Y H,Yu J,Lin B,et al. A cobalt-free Sm0.5Sr0.5Fe0.8Cu0.2O3−δ -Ce0.8Sm0.2O2−δcompositecathode forproton-conducting solidoxide fuel cells[J]. Journal of Power Sources,2011,196:2631-2634. 链接1

[47] Kim J D,Kim G D,Moon J W,et al. Characterization of LSMYSZ composite electrode by ac impedance spectroscopy[J]. Solid State Ionics,2001,143:379-389. 链接1

[48] He F,Wu T Z,Peng R R,et al. Cathode reaction models and performance analysis of Sm0.5Sr0.5CoO3- BaCe0.8Sm0.2O3 composite cathode for solid oxide fuel cells with proton conducting electrolyte[J]. Journal of Power Sources ,2009,194:263-268. 链接1

[49] Uchida H,Tanaka S,Iwahara H. Polarization at Pt electrodes of a fuel cell with a high temperature-type proton conductive solid electrolyte[J]. J. Appl. Electrochem,1995,15:93-97. 链接1

[50] Zhao L,He B B,Gu J Q,et al. Reaction model for cathodes cooperated with oxygen-ion conductors for solid oxide fuel cells using proton conducting electrolytes [J]. International Journal of Hydrogen Energy,2012,37:548-554. 链接1

相关研究