登录

论文 视频 会议

订阅 投稿

  • 首页
  • 学术期刊
  • 学术焦点
  • 学术视频
  • 工程成就
  • 工程前沿
  • 联系我们
期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

2018年 第5卷 第3期

大纲

摘要

关键词

《工程管理前沿(英文)》 >> 2018年 第5卷 第3期 doi: 10.15302/J-FEM-2018022

Floating production storage and offloading systems’ cost and motion performance: A systems thinking application

展示更多

1. Civil & Environmental Engineering, University Tech. PETRONAS, Bandar Seri Iskandar, Malaysia; Civil Engineering, Curtin University, Perth, Australia
2. Civil Engineering, Curtin University, Perth, Australia
3. Civil & Environmental Engineering, University Tech. PETRONAS, Bandar Seri Iskandar, Malaysia

录用日期 : 2018-08-23 发布日期 :2018-09-14

摘要

Floating production storage and offloading (FPSO) units increasingly represent a practical and economic means for deep-water oil extraction and production. Systems thinking gives a unique opportunity to seek a balance between FPSO technical performance(s), with whole-cost; stakeholder decision-making is charged to align different fit-for-use design specification options’ that address technical-motion(s), with respective life-cycle cost analyses (LCCA). Soft system methodology allows situation based analyses over set periods-of-time by diagnosing the problem-at-hand; namely, assessing the antecedents of life-cycle cost relative to FPSO sub-component design alternatives. Alternative mooring- component comparisons for either new-build hulls or refurbished hulls represent an initial necessary consideration to facilitate extraction, production and storage of deep-water oil reserves. Coupled dynamic analysis has been performed to generate FPSO motion in six degrees of freedom using SESAM DeepC, while life-cycle cost analysis (LCAA) studies give net-present-value comparisons reflective of market conditions. A parametric study has been conducted by varying wave heights from 4 – 8 m to understand FPSO motion behavior in the presence of wind and current, as well as comparing the motions of turreted versus spread mooring design alternatives. LCCA data has been generated to compare the cost of such different mooring options/hull conditions over 10 and 25-year periods. Systems thinking has been used to explain the interaction of problem variables; resultantly this paper is able to identify explicit factors affecting the choice of FPSO configurations in terms of motion and whole-cost, toward assisting significantly with the front-end engineering design (FEED) phase of fit-for-purpose configured FPSOs, in waters off Malaysia and Australia.

关键词

FPSO ; LCCA ; spread/turret-mooring ; DeepC ; cost ; motion ; soft-systems

正文

关注我们

网站版权所有 © 2015 《中国工程科学》杂志社有限责任公司

京公网安备 11010502051620号 京ICP备11030251号-2
Follow us
网站版权所有 © 2015 《中国工程科学》杂志社有限责任公司
京公网安备 11010502051620号 京ICP备11030251号-2