《1. 历史回顾》

1. 历史回顾

犬新孢子虫(N. caninum)是一种球虫原虫,属于顶复门[1],1988年以前人们常将其与密切相关的顶复门寄生虫弓形虫(T. gondii)混淆[2,3]。1984年,Bjerkås等[4]首次描述了挪威的一窝6只拳师犬幼犬先天性感染的脑脊髓炎(脑和脊髓疾病)和肌炎(肌肉疾病)病例,这是由某一不明寄生虫导致的。这种寄生虫于1988年被正式确认为犬新孢子虫,其依据是对美国波士顿安格尔纪念动物医院(Angell Memorial Animal Hospital)对1952—1987年死于弓形虫样疾病的狗和猫的数千个组织切片进行回顾性分析,该组织切片对抗弓形虫抗体的免疫组织化学反应呈阴性[2,3]。

《2. 生活史》

2. 生活史

犬新孢子虫寄主范围很广,且拥有一个由两种不同的繁殖方式组成的多宿主的生活史:①无性繁殖,发生在中间寄主中;②有性繁殖,仅发生在终末宿主犬中,包括狗[5]、郊狼[6]、灰狼[7]和野狗[8](图1)。虽然弓形虫的有性繁殖阶段已经十分明确,但犬新孢子虫的有性繁殖阶段尚不清楚,如裂体增殖和配子生殖。犬新孢子虫唯一已知的性阶段是非孢子化二倍体卵囊,它对冷冻和干燥具有环境抵抗力。未孢子化的卵囊从受感染的犬的粪便中脱落,并在环境中进行减数分裂,形成单倍体子孢子(图1)[3]。在中间宿主摄入孢子化卵囊之后,孢子体从卵囊中释放出来,并转化为一个迅速生长的阶段(称为速殖子),从而传播感染(图1)。在纳虫空泡(parasitophorous vacuole, PV)内,速殖子侵入宿主细胞,通过重复的内生性复制无性繁殖。经过几轮的胞内增殖后,寄生虫溢出宿主细胞[9]重新感染新的宿主细胞,随后产生宿主特异性的先天和适应性免疫反应。由于宿主的免疫反应和其他环境因素,速殖子转化为一个缓慢生长的半休眠阶段(称为缓殖子),并存在于组织包囊中(图1)。组织包囊可以在宿主细胞中长期存在,并且可以转化为速殖子以产生慢性感染,特别是针对免疫功能低下的宿主[10]

《图1》

图1. 多宿主的新孢子虫生活史。转载自参考文献[3]

《3. 传染》

3. 传染

尽管具有广泛的宿主范围和复杂的生活史,但新孢子虫分别感染牛和狗作为其主要中间宿主和终宿主 [11]。牛可以通过摄入由终宿主排出的感染性卵囊横向传染,也可以经胎盘或先天性传播从一个受感染的怀孕母亲向它的胎儿垂直传播(图1)。垂直传播被认为是新孢子虫在牛群中最主要和最有效(80%)的传播途径。垂直传播既可以通过妊娠母牛的卵囊源性感染进行外源性传播,也可以通过妊娠期间重新激活的慢性感染进行内源性经胎盘传播[3]。感染新孢子虫的胎儿可以在任何胎龄内流产,被吸收,木乃伊化,自体溶解,或出生后持续感染。其他中间宿主包括绵羊、山羊、鹿和狗也有过经胎盘传播的记录。通过精液和牛奶传播被认为是不可能的[3]。狗通常通过摄入受感染的中间宿主组织而造成经口感染。猫是弓形虫和哈蒙球虫(Hammondia hammondi)的终末宿主[12],与猫不同的是,狗在性传播过程中通常会产生较少的新孢子虫卵囊。考虑到狗和牛在兽群中的密切联系[1,5]以及通过几代牛进行垂直传播的可能性[13,14],传染的可能性明显更高,因为寄生虫可以在同一兽群内的终末宿主和中间宿主之间长期维持和繁殖。这种通过无性繁殖和有性生殖在牛和狗之间的局部传播周期可能正在塑造新孢子虫的种群结构。

《4. 休斯新孢子虫》

4. 休斯新孢子虫

鉴定新的新孢子虫种(即休斯新孢子虫)的首次报道是在1998年,宿主是美国加利福尼亚州的一匹患有马原虫性脑脊髓炎的马。休斯新孢子虫被认为是一个分离出来的物种,因为它似乎仅限于马[15],且与犬新孢子虫相比,有明显的抗原和序列差异。例如,表面抗原SAG1在NcSAG1与NhSAG1之间的氨基酸同源性差异为6% [16]。因此,NcSAG1衍生的mAb 6C11不与休斯新孢子虫SAG1杂交[16]。相似地,另一种表面抗原SRS2(NcSRS2和NhSRS2)表现出9%的氨基酸差异。因此,这两种表达丰富的表面抗原之间的抗原特异性已被用来产生有效的分子标记物,以区分犬新孢子虫和休斯新孢子虫[16]。休斯新孢子虫和犬新孢子虫之间的致密颗粒蛋白GRA6和GRA7的比较分析也揭示了氨基酸序列和结构组织的显著差异[18]。除了这些抗原标记物外,还使用了基于重复的ITS1区域内的核苷酸序列差异的敏感分子检测方法来区分休斯新孢子虫和犬新孢子虫(7~9 bp)[19]

有趣的是,在实验性啮齿动物感染过程中,犬新孢子虫和休斯新孢子虫之间这些基因差异也会导致表型差异。休斯新孢子虫主要引起心肌组织坏死,而犬新孢子虫病变主要见于肝脏、肺和大脑。此外,在沙鼠(Meriones unguiculatus)模型中,犬新孢子虫和休斯新孢子虫的致命性有显著差异。沙鼠极易受犬新孢子虫的经口感染,导致大多数沙鼠在感染后6~13 d内死亡[20]。相反,休斯新孢子虫感染在沙鼠中不会产生明显的临床症状,而只存在一些微小的病变。然而,这两个物种之间的遗传和生物学差异是否是由于物种特异性差异或虫株特异性差异(如弓形虫)引起的还需要进一步阐明。由于种间杂交最近已被证明发生在利什曼原虫领域,犬新孢子虫和休斯新孢子虫之间的实验性遗传杂交也许可以揭示这两种寄生虫是否应该被认为是单独的物种[21]。综上所述,目前的共识是:新孢子虫种群结构至少由两个独立的新孢子虫种类组成,即犬新孢子虫和休斯新孢子虫,它们由一个共同的祖先进化而来,并且已经独立地扩展以适应它们的各种脊椎动物宿主。

《5. 检测》

5. 检测

《5.1. 形态学检测》

5.1. 形态学检测

目前已经开发了几种形态学检测方法来识别感染样本中的新孢子虫病。细胞学通过显微镜检查细胞自旋涂片或印模涂片,其次是Diff-Quick快速染色,Giemsa染色和(或)苏木精或伊红(hematoxylin or eosin, HE)染色病变,是领域内快速检测新孢子虫病最常规的方法。然而,由于与密切相关的寄生虫在形态上的相似性,除了Neospora的标志之一厚壁(高达4 μm)组织包囊的存在外,很难将新孢子虫与弓形虫和哈蒙球虫区分开来。透射电子显微镜也被用来将新孢子虫与弓形虫和肉孢子虫进行区分,其基础是新孢子虫中存在电子密集的棒状体。相反,弓形虫具有低电子密度,而在肉孢子虫裂殖子中没有棒状体。免疫组织化学(immunohistochemical, IHC)染色是另一种检测固定组织中的新孢子虫病的方法,它敏感性强且被广泛使用 [22–24]。亲和素-生物素复合物间接免疫过氧化物酶和过氧化物酶-抗过氧化物酶技术也是具有相同敏感性的方法。针对新孢子虫的单克隆抗体和多克隆抗体均被用于IHC,其中兔多克隆抗体比单克隆抗体具有更高的敏感性。然而,最近,NcSRS2和NcGRA7单克隆抗体[24]的组合被证明比多克隆抗体更特异、更敏感,从而抑制了多克隆抗体与弓形虫或相关球虫寄生虫交叉反应的可能性。

《5.2. 血清学检测》

5.2. 血清学检测

自从发现新孢子虫病以来,已经开发了几种血清学方法来检测它。感染后,可在两周内检测到新孢子虫特异性免疫球蛋白M(immunoglobulin M, IgM)抗体,而IgG抗体需要几周时间才能达到检测水平,滴度在初次感染后6个月达到峰值。几种抗原已被广泛用于检测,包括表面抗原NcSRS2、NcSAG1、NcSAG4和Ncp40,细胞骨架蛋白NCPF,致密颗粒蛋白NcGRA2、NcGRA6和NcGRA7,丝氨酸蛋白酶NcSUB1以及微线体蛋白NcMIC6和NcMIC10 [25]。间接荧光抗体试验(indirect fluorescent antibody test, IFAT)是应用于新孢子虫检测的第一种基于抗体的方法[2]。在这种方法中,完整的速殖子被固定在盖玻片上,并与试验血清一起孵育;然后它们与荧光素标记的针对宿主免疫球蛋白的二抗进行杂交。IFAT被认为是检测新孢子虫病的参考试验,因为该试验与密切相关的顶复门寄生虫的交叉反应性很小,可以通过滴度血清来量化[26,27]。通过使用新孢子虫特异性抗原[28,29]取代改良凝集试验(modified agglutination test, MAT)中的弓形虫抗原,一种直接的新孢子虫凝集试验(Neospora agglutination test, NAT)也得到了发展。NAT已被用来测试在多达16种不同动物物种的大量血清中是否存在IgM,并被发现与IFAT一样敏感。然而,最广泛和最商业化的血清学检测方法是酶联免疫吸附测定(enzyme-linked immunosorbent assay, ELISA)[30],它可对大量样品进行自动化扫描,具有较高的特异性。已经建立了各种ELISA方法,如间接ELISA法(iELISA)和细胞ELISA法(cELISA),主要采用速殖子总裂解或纯化的天然抗原进行聚苯板敏化作用[31,32]。利用天然或总抗原的一个缺点是可能与其他密切相关的球虫寄生虫发生交叉反应[33]。因此,广泛的新孢子虫特异性抗原目前被用于包被ELISA板,以建立特异性[30,34,35]。同时利用IgG、IgA和IgE抗体建立了基于ELISA的亲和性试验,以估计感染的时机。其他血清学技术,如基于NcGRA6 [36]、NcSAG1 [37]的乳胶凝集试验(latex agglutination test, LAT)和免疫印迹实验(immunoblot, IB)[38]已经被开发出来,但没有得到广泛的应用。

《6. 感染率》

6. 感染率

牛、肉牛、狗、山羊和其他家畜血清中新孢子虫抗体的存在已在世界各地报道过,主要使用上述血清学方法。牛、狗、山羊和绵羊的血清感染率如图2所示[3]。然而,值得一提的是,由于使用血清学方法的不同、临界值的差异以及缺乏从受感染动物中分离活寄生虫的验证,不同研究小组的血清感染率数据是不可比较的[1]。尽管如此,在其他研究中已经成功地从确定的宿主中分离出了可存活的寄生虫,特别是狗,以及广泛的中间宿主,如牛、羊、白尾鹿和水牛[1,3]。虽然实验表明新孢子虫在养牛业中只在牛和狗之间传播,但上述任何中间宿主都可能作为新孢子虫传播的额外重要宿主而存在。例如,白尾鹿是美国新孢子虫的主要宿主之一,其血清阳性率为88% [39]。人畜共患病传播的可能性也是未知的。有人认为,与弓形虫不同,新孢子虫和哈蒙球虫对人类没有传染性。巴西、丹麦、埃及、韩国和美国的人体内都检测到了低滴度的新孢子虫抗体[40–42]。虽然这一观察结果可以用弓形虫和新孢子虫的抗原相似性来解释,但在灵长类动物(Macaca mulatta)模型中已经通过实验描述了经过胎盘传播的新孢子虫病[43,44],新孢子虫可以在不同的人类细胞系中进行体外培养[45]。因此,这些数据提供了有关人畜共患疾病传播可能性的线索。然而,尚未从人身上回收到活的寄生虫或寄生虫的DNA。

《图2》

图2. 牛、狗、山羊和绵羊等(轴)不同宿主的新孢子虫的总体血清阳性率的热图。轴代表国家/地区。

《7. 分子流行病学》

7. 分子流行病学

新孢子虫领域成功的分子流行病学和系统发育研究需要从其广泛的宿主和地理范围中分离出大量虫株以及合适的遗传工具。与弓形虫不同,新孢子虫研究缺乏足够的工具和分离虫株以区分不同的新孢子虫虫株及其宿主限制机制。迄今为止,新孢子虫虫株的鉴定依赖于一些测序标记,这些标记已用于将新孢子虫与密切相关的球虫区分开来。但是,这些标记不能区分不同的新孢子虫虫株。新孢子虫中使用最广泛的分子标记是ssuRNA和pNc5(GenBank登录号:X84238)中的18SrRNA和ITS1区域[43,44],因为它们具有重复的特性,单拷贝基因对聚合酶链反应(polymerase chain reaction, PCR)检测的敏感性低于多拷贝基因。在弓形虫、哈蒙球虫和新孢子虫之间的18S rRNA基因中,仅检测到少量的单核苷酸多态性(single-nucleotide polymorphism, SNP),说明它们之间存在密切的关系。然而,利用通用引物、物种特异性化学发光DNA杂交探针[46]、使用新孢子虫特异性引物进行的第二轮巢式PCR [47]或PCR限制性片段长度多态性(PCR-restricted fragment length polymorphism, PCR-RFLP)与BsaJI酶[48],这些SNP足以将新孢子虫与弓形虫和哈蒙球虫区分开来。尽管可以利用18S rRNA区分亲缘关系较近的寄生虫,但目前尚未发现NC1、N. caninum Liverpool (Nc-Liv)、NC3、NCSweB1等不同新孢子虫分离株之间的序列差异[43,44]。另一个ssuRNA标记ITS1由于其高灵敏度和特异性也被广泛用于物种特异性区分。随后,为了提高检测新孢子虫1~10 fg基因组DNA的敏感性,设计了一种基于ITS1的单管嵌套式PCR [49]。该方法具有较高的灵敏度和特异性。但是,与18S rRNA位点不同,在NC-Bahia虫株(南美起源)和新孢子虫的不同犬和牛分离株之间发现了差异,包括NC1、Nc-Liv、BPA1、NC-SweB1和NcNZ1,它们在ITS1上共享相同的序列[15,44,50,51]。尽管后一种标记对于检测新孢子虫极为敏感,但由于在循环新孢子虫分离物中发现了高度的遗传相似性,因此可能不适用于表征种内虫株异质性或系统发育分析。另一个多拷贝基因pNc5已被广泛用于检测广泛的中间宿主和最终宿主中的新孢子虫感染。然而,由于这些引物被报道可以扩增啮齿类动物特异性DNA,因此它的特异性并不强[52]。最近,基于单基因测序的标记包括14-3-3、表面抗原(SAG1、SAG4和SRS2)、分泌的致密颗粒蛋白(GRA6和GRA7)以及一些管家基因,如α-微管蛋白、β-微管蛋白和热休克蛋白70(heat shock protein 70, HSP-70)被开发用于对来自某一特定地理区域的一些牛和犬新孢子虫分离株进行基因分型[16–18,53,54]。这些标记在不同的新孢子虫分离株中高度保守,这使它们在鉴别新孢子虫分离株中的有效性受到质疑。

与单拷贝基因序列标记不同,小卫星或微卫星标记被分类为可变数目的串联重复序列(variable number of tandem repeat, VNTR)DNA,在该物种的不同分离株之间捕获了广泛的遗传多样性。因此,小卫星和微卫星标记已被广泛用于密切相关的新孢子虫分离株的分子区分[55, 56]。一项使用微卫星标记的基因分型研究确定了9种新孢子虫之间的遗传多样性,而每种病原菌的DNA谱与其地理起源之间没有关联[55]。在另一项最新研究中,使用9种多位点微卫星标记对来自世界各地的11株新孢子虫参考虫株和来自西班牙、阿根廷、苏格兰和德国的96株新孢子虫临床虫株进行了基因分型[57]。微卫星表征揭示了广泛的遗传多样性,其中包括96个微卫星多位点基因型。微卫星标记不能捕获整个基因组的真实多态性,并且可能由于相似性而将虫株误分类为变异体[58]。然而,基于统计值(F-statistics value, FST )和eBURST分析,使用这些标记物可以识别出清晰的地理亚结构,这可能表明随着畜牧业的发展,出现了新孢子虫分离株[57]。因此,需要进行系统分析,将相对非多态性的单基因位点与使用微卫星标记鉴定的遗传多样性进行比较,以确定种群遗传多样性的真实程度。最近,宏基因组新一代测序(next-generation sequencing, NGS)已发展成为研究弓形虫性脑炎的诊断工具[59]。因此,可以开发宏基因组新一代测序,以与新孢子虫病病例有因果关系的靶标独立方式鉴定和基因分型。

《8. 基因组》

8. 基因组

尽管弓形虫、哈蒙球虫和新孢子虫在宿主范围和其他生物学方面(如小鼠模型中的毒力)存在显著差异,但基于全基因组测序,它们的基因组具有高度同义性[表1、图3(a)] [60–62]。Nc-Liv是第一个使用Sanger测序技术测序到8倍覆盖率的新孢子虫基因组。它聚集成一个由585个超级重叠群和7121个基因组成的61 Mb基因组(欧洲核苷酸档案库,项目:CADU00000000;www.toxodb.org)。随后,由于它们的高同位基因组,使用弓形虫Me49基因组将这些超级重叠群重新组装成14条染色体[图3(a)] [60,61]。尽管大约在2800万年前新孢子虫和弓形虫从它们的共同祖先中被分离出来,但根据恶性疟原虫和赖氏疟原虫之间的突变率计算得出的结果[63],在这两种疟原虫之间只观察到少量的染色体重排和较低的遗传信息净增益/损失物种。一个例外是新孢子虫(227 NcSRS基因和52 NcSRS假基因)中的表面抗原家族[尤其是SAG1相关序列(SAG1-related sequence, SRS)]的显著扩展,它们串联排列在整个基因组的多基因簇中[图3(b)]。在这些SRS中,新孢子虫在速殖子阶段仅表达25个NcSRS基因的一个子集,每个多基因簇仅表达一个基因。基于Nc-Liv的速殖子以及基于链特异性RNA测序和鸟枪法蛋白质组学,已校正了超过1/3先前注释的基因模型和未翻译区(untranslated region, UTR)的最新预测遗传结构[64]。RNAseq数据的使用不仅显著提高了新孢子虫基因组的注释质量,而且还导致了对顺式-天然反义转录本(cis-natural anti-sense transcript, cis-NAT)和长基因间非编码RNA(long intergenic non-coding RNA, lincRNA)的鉴定[64]。有趣的是,对弓形虫、哈蒙球虫和新孢子虫之间代谢途径的比较分析发现,除了少数差异表达的基因和犬新孢子虫中氮代谢基因的上调外,新陈代谢基因没有重大变化 [61]

《表1》

表1 三种紧密相关的顶复门寄生虫的比较分析

《图3》

图3. 紧密相关的顶复门寄生虫新孢子虫、弓形虫和哈蒙球虫的比较分析。(a)Circos图表明三个紧密相关的顶复门寄生虫之间的高度同基因组的基因组。外圈代表每个寄生虫的带注释的染色体。使用NCBI blast V. 2.5在这些虫株的参考序列(www.toxodb.org)中进行核苷酸比对。允许同一性为70%或更高,e 值小于0.001,最小片段大小为500 bp。使用Circos V. 0.69中的功能区链接,绘制了由核苷酸母带发现的参考序列之间的同构关系。(b)新孢子虫(Nc)和哈蒙球虫(Hh)中的弓形虫Me49(Tg)的前10个Pfam结构域的相对丰度表明,新孢子虫中SAG/SRS结构域的显著扩展。

《9. 分子遗传学工具》

9. 分子遗传学工具

全基因组测序和转录分析的出现促进了分子遗传学工具的发展,以阐明新孢子虫基因调控和发病机制的潜在机制。然而,为了阐明已经通过基因组学研究鉴定的基因的功能,有必要开发操纵基因组的遗传工具。由于与弓形虫基因组高度同源[60,61],现有的用于弓形虫遗传修饰的异源表达系统已初步用于新孢子虫的转染和转化[65]。利用弓形虫GRA1启动子,大肠杆菌lacZ 基因也在新孢子虫中稳定表达[66],这一转基因株成为筛选抗寄生虫分子的重要工具。随后,弓形虫的几个基因,包括SAG1、GRA2、NTPase3和ROP2,也被成功转染到新孢子虫中,以更好地了解这些基因的分子机制。这项工作最终使ROP8基因得到鉴定。因此,弓形虫基因在免疫学上不同的新孢子虫背景中的异源表达[67]证明了研究重要的弓形虫基因对活疫苗候选物开发的有用性[68]。继成功的稳定转染系统后,突变的二氢叶酸还原酶-胸苷酸合酶(dihydrofolate reductase-thymidylate synthase, DHFR-TS)对乙胺嘧啶有抗性[69],并插入了稳定的药物选择标记,如氯霉素乙酰基转移酶[70],来研究新孢子虫中的基因组编辑。最近,刚地弓形虫的簇状规则间隔的短回文重复序列(clustered regularly interspaced short palindromic repeat, CRISPR)相关基因9(CRISPR/Cas9)系统已被有效地和专门地用于新孢子虫的基因组编辑[71]。利用CRISPR/Cas9系统,已成功地从Nc-1表达绿色荧光蛋白(green fluorescent protein, GFP)的虫株和Nc-Spain7分离物的NcGRA7基因中删除GFP,并用乙胺嘧啶选择标记取代[71]。因此,CRISRP/Cas9系统将提供有效和可靠的方法,对新孢子虫的基因组进行精确的、有针对性的改变,以研究特定的基因功能[72],检测与新孢子虫发病机制有关的基因或产生能够对急性和慢性新孢子虫病提供免疫保护的减毒活疫苗株。

《10. 病原与宿主的相互作用》

10. 病原与宿主的相互作用

在进化的过程中,宿主发展出复杂的免疫防御系统来对抗病原体,然而病原体已经进化出逃避宿主监测并成功感染的策略。新孢子虫感染大量的中间宿主。因此,能够进入宿主细胞并逃避宿主免疫力对其生存和持续感染至关重要。为了进入宿主细胞,新孢子虫首先在速殖子和宿主细胞表面之间形成低亲和力接触,然后黏附到宿主细胞上。宿主细胞表面蛋白聚糖,特别是速殖子的硫酸软骨素糖胺聚糖(glycosaminoglycan, GAG)和缓殖子的末端唾液酸残基,充当促进新孢子虫感染的黏附受体[73,74]。新孢子虫表面抗原,包括NcSAG1和NcSRS2,是促进宿主与寄生虫之间初始接触的寄生虫因子。有趣的是,全基因组测序结果发现,与亲缘关系较近的弓形虫(135个SRS基因)相比,新孢子虫[223 个SRS基因,图3(b)]的表面抗原显著扩增[61]。SRS基因扩增的显著差异和SRS基因对初始宿主免疫调节和寄生虫毒力调节的影响差异仍然未知。在初次接触后,寄生虫利用活跃的滑行运动和存在于分泌细胞器中持续表达的蛋白质[即微线体(microneme, MIC)、棒状体(rhoptry protein, ROP)和致密颗粒(GRA)],通过移动连接进入宿主细胞,形成PV [75–77]。与刚地弓形虫中的机制不同,新孢子虫中天冬氨酰蛋白酶的抑制剂胃蛋白酶抑制剂在组装、运输微线体和棒状蛋白到宿主细胞中起着重要作用,并且对新孢子虫侵入有重要影响[77,78]。用兔抗N54进行的免疫荧光研究鉴定了另一种新孢子虫蛋白酶NcSUB1(以前称为NC-p65)。NcSUB1位于新孢子虫的微线体细胞器中,并参与宿主细胞的入侵机制[79]。运动结合体的形成导致ROP蛋白注入PV中。在刚地弓形虫中进行的基于正向遗传学的研究、数量性状基因座(quantitative trait locus, QTL)分析和基于反向遗传学的基因敲除研究,确定了ROP18/ROP5复合物是实验室小鼠感染期间的主要毒力因子。ROP5蛋白与免疫相关的GTPase (immunity-related GTPase, IRG)结合以阻止其低聚和激活反应,伴随着ROP18介导的IRG磷酸化[80-87]。最近的研究表明,ROP18/ROP5复合物还包括另一种对低聚IRG具有高度亲和度的棒状激酶ROP17 [88]。有趣的是,对ROP18序列的全基因组的比较表明,ROP18在新孢子虫中呈现假基因化,并且包含上游区域(upstream region, UPS)。上游区域存在于非毒性III型虫株中,但不存在于毒性I型和中等毒性II型刚地弓形虫虫株中[61,89]。然而,在新孢子虫(Nc1)中表达刚地弓形虫I型RH毒株的ROP18增强了它们在小鼠中的毒性作用[90]。虽然ROP18在新孢子虫中呈假基因化,但已充分证明干扰素γ(interferon-γ, IFN-γ)是抵抗新孢子虫的主要细胞因子[91,92]。有趣的是,IFN-γ激活的间充质基质细胞不仅抑制了新孢子虫的生长,而且还显示了IRG(irga6、irgb6和iRGD)和鸟苷酸结合蛋白(mGBP1和mGBP2)对新孢子虫的抵抗作用[93]。因此,综上所述,这些发现表明,在实验小鼠模型中,假基因化的ROP18和参与寄生虫清除的IRG是导致新孢子虫的非毒性表型的原因。除了IFN-γ以外,新孢子虫还是toll样受体(toll-like receptor, TLR3)依赖性I型(α/β)干扰素的有效激活剂[94]。在刚地弓形虫的正向遗传学研究中,研究人员还发现了一种非ROP2棒状体蛋白ROP16。ROP16通过虫株特定性方式运输到宿主细胞核并磷酸化STAT3/STAT6,从而导致先天免疫信号的显著激活并通过减弱IL-12信号抑制小鼠体内的毒力[61,95,96]。与刚地弓形虫相反,新孢子虫ROP16仅磷酸化STAT3,而不磷酸化STAT6,从而导致宿主细胞有凋亡趋势[97]。棒状蛋白质组分析已经在新孢子虫中发现其他棒状蛋白质成分,包括NcROP1、NcROP5和NcROP30,它们与弓形虫中的同源性很高。

类似地,在弓形虫入侵期间,致密颗粒抗原(GRA)被大量分泌出来,并在PV中组成性表达,以调节宿主信号通路。虽然一些GRA物质已被鉴定为弓形虫PV成熟的关键调节剂[98],但其中与宿主细胞核相关的屈指可 数:仅 有GRA15 [99]、GRA16 [100]和GRA24 [101]。GRA15已被证明可激活NF-κB通路,并控制感染后刚地弓形虫的IL-12分泌的诱导[99]。相反,GRA16参与细胞周期进程和p53肿瘤抑制途径[100],而GRA24调节宿主p38α MAP激酶[101]。与刚地弓形虫的情况相反,除了NcGRA6和NcGRA7(原名NcDG1 [102]和NcDG2 [103]),GRA在新孢子虫中的特征不明显。NcGRA7被分泌到PV中,并且位于PV基质(PV matrix, PVM)中[76]。包括NcGRA1、NcGRA2、NcMAG1和NcNTPase在内的其他GRA已被表征并在速殖子致密颗粒中表达,并位于PV基质中[76,104]。虽然GRA15激活了刚地弓形虫中的NF-κB通路[99],但该基因在新孢子虫中呈假基因化。

在实验小鼠模型中,多种差异性和虫株特异性分泌效应因子对刚地弓形虫与宿主的相互作用和毒力产生了影响。虽然新孢子虫的特异虫株差异还没有得到很好的研究,但已经有文献记载了几个不同免疫结果的实例。一个例子是,与无毒的Nc-SweB1分离株相比,对照株Nc-Liv被证明可在小鼠中引起严重的新孢子虫病临床症状,包括炎性浸润和高度坏死病变[105]。另一种非毒性分离虫株Nc-Nowra在实验室小鼠中引起轻度至中度非化脓性脑炎,而Nc-Liv则引起严重非化脓性脑炎[106]。实验室小鼠毒力分析还显示NC1的毒性比NC3更强[107]。基于这些观察推测出,与刚地弓形虫相似,毒力的差异是由于新孢子虫虫株特异性差异造成的。为了支持这一假设,研究人员进行了比较差异凝胶电泳(difference gel electrophoresis, DIGE)和基质辅助激光解吸/电离飞行时间质谱(matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, MALDI-TOFMS)技术。结果表明,蛋白质组表达谱在强毒株和弱毒株之间存在显著差异。此外,这些分析还发现了NT-Pase在强毒新孢子虫虫株中的表达不受调控[108]。最近的一项新孢子虫免疫组学研究显示,强毒虫株(Nc-Liv, Nc-Spain1H)和弱毒虫株(Nc-Spain7)之间存在虫株特异性差异。结果还显示出在强毒的虫株中,有4种蛋白质的表达始终较高:丝氨酸-苏氨酸磷酸酶2C、超氧化物歧化酶、GAP45和NcGRA1 [109]。与对刚地弓形虫的研究同理,正向遗传分析包括遗传杂交的发展以及随后的QTL分析或全基因组关联测试,可能会鉴定出导致新孢子虫致病机制中虫株特异性差异的其他分泌决定因素。

《11. 疫苗接种》

11. 疫苗接种

牛新孢子虫病造成的巨大经济损失受到了全世界的广泛关注。根据系统性的评估,全世界牛新孢子虫病造成的经济损失估计为1.298×109 USD∙a–1 ,最高可达2.380×109 USD∙a–1 [110]。这些损失的2/3来自于乳业(8.429×108 USD∙a–1 ),因为奶牛受到新孢子虫感染而发生中位特异性流产的风险(14.3%)比肉牛(9.1%)更高。此外,全球2/3的经济损失发生在北美洲(65.7%),其次是南美洲(18.5%)和大洋洲(10.6%),而欧洲三个国家(荷兰、西班牙和英国)的损失估计仅为5.3%。因此,巴西、墨西哥和美国是接种新孢子虫疫苗的主要目标市场[110]。虽然牛新孢子虫病疫苗的全球市场很大,但是目前还没有预防会引发流产的新孢子虫病的传播的治疗方法或疫苗。唯一获得许可的犬新孢子虫疫苗是Bovilis Neoguard(Intervet International B.V.,荷兰)。它是由灭活的犬新孢子虫速殖子(收获时速殖子数为3×10 6 个∙mL–1 )、10%的卤素佐剂、5%的稳定剂和5%磷酸盐缓冲盐水组成。不幸的是,在哥斯达黎加和新西兰进行的几项后续研究表明,这种疫苗或者药效低(20%),或者经胎盘传播增加导致胚胎早期死亡的风险增加,最终这种疫苗退出市场[72,111]。近来,弓形虫速殖子提取物疫苗与大豆卵磷脂/β-葡聚糖佐剂(sNcAg/AVEC)的可溶部分在孕牛中显示出免疫原性并诱导出高IFN-γ反应[112]。然而,由自然减毒或低毒力分离株(如Nc-Nowra [113]、Nc-Spain1H [114]和阿根廷分离株Nc-6 [115])组成的新孢子虫速殖子活疫苗可显著提高犬新孢子虫的抗体反应,并大大降低流产率。但是,使用活疫苗存在一些固有的弊端,如活寄生虫的大量保存问题以及免疫后病原性的逆转风险[116]。因此,灭活或亚单位疫苗是更有吸引力的选择。遗憾的是,被低聚甘露糖微粒体(M3-NcGRA7)包裹的NcGRA7重组体(50~200 µg)[117],以及细菌表达和纯化的重组蛋白,包括rNcSAG1、rNcHSP20和rNcGRA7 [118],都未能防止怀孕的母牛受到感染。因此,研发一种新的、更有效的疫苗,如新孢子虫的减毒活株(包括Ca2+ 依赖性蛋白激酶2缺陷速殖子),对宿主长期免疫新孢子虫病至关重要[119]

《12. 结论》

12. 结论

顶复门犬新孢子虫是导致牛流产、死胎或犬类神经肌肉障碍的主要原因。牛新孢子虫病对肉制品和乳品行业有巨大的经济影响,且目前尚无有效的防治方法。因此,研发出新药物、疫苗和(或)工具来对抗新孢子虫病极为迫切。为了研发出减轻新孢子虫病侵害的新方法,有必要确定其种群遗传结构以预测病原体的进化过程,还需要更好地了解宿主与病原体的相互作用。目前可用的遗传标记(基于RFLP和基于序列的标记)还不能完全区分犬新孢子虫分离株。近来,微卫星标记可以在新孢子虫种群中鉴定出亚结构。然而,利用微卫星标记确定的固定(F ST )统计数据和Bayesian聚类算法被同源异型推翻。同源异型推断出的种群结构比可能存在的更为复杂。因此,对全世界范围内宿主的多种虫株进行全基因组测序是有必要的。这将扩大现存遗传标记的适用范围,并能生产出更好的模型,来确定通过无性繁殖或有性繁殖传播的程度,以便制定出更明智的策略,降低传播风险并提高宿主对新孢子虫急性和慢性感染的免疫保护。

《Acknowledgements》

Acknowledgements

The authors are supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases (NIAID) at the National Institutes of Health. M.E.G. is a scholar of the Canadian Institute for Advanced Research (CIFAR) Program for Integrated Microbial Biodiversity.

《Compliance with ethics guidelines》

Compliance with ethics guidelines

Asis Khan, Jahangheer S. Shaik, Patricia Sikorski, Jitender P.Dubey, and Michael E. Grigg declare that they have no conflict of interest or financial conflicts to disclose.