《1. 引言》

1. 引言

具有高能量密度和高稳定性的含能化合物在军事和民用领域都发挥着至关重要的作用[1–3]。近年来,含能材料的研究经历了快速发展期,涌现了各种新型含能材料,如富氮杂环化合物[4–8]、富含能基团[–NO2、– NNO2、–N3、–C(NO2)3等]的高张力环状分子[9]、含能离子盐[10–13]、共晶炸药[14–19]以及含能配位聚合物 [20–24]。不过,这些新型含能材料虽然爆轰性能优异,但往往存在稳定性差、制备方法复杂或成本过高等诸多问题,多数难以得到实际应用。如何设计并获得实用的新型先进含能材料仍是当前面临的一个挑战性课题。

化学通式为ABX3的分子钙钛矿化合物提供了一个独特的材料构筑平台,可据此通过合理选择组分构筑出各类新材料以满足特定需求;故此,近十年来,这类分子钙钛矿化合物因其丰富的物理性质和潜在的应用价值得到了广泛的研究[25–31]。基于ABX3钙钛矿结构,我们采用可作为燃料组分的有机阳离子(1,4-二氮杂双环 [2.2.2]辛烷-1,4-二鎓离子,简写为H2dabco2+)作为A位点组分,三倍的氧化性阴离子(ClO4)作为X位点组分,使燃料组分和氧化性组分在分子水平上交替排列,从而合成了四例具有紧密堆积结构的分子钙钛矿含能化合物 (H2dabco)M(ClO4)3(M = Na+ 、K+ 、Rb+ 和NH4+ ,分别记为DAP-1、DAP-2、DAP-3和DAP-4)。它们不仅具有高稳定性和低成本的优点,实验结果还表明,这种紧密堆积结构使得它们能够发生快速且充分的爆炸性分解反应 [32–34]。在此基础上,我们还合成了两例基于碱金属离子的分子钙钛矿含能化合物(H2pz)Na(ClO4)3(H2pz2+ = 哌嗪-1,4-二鎓离子,记为PAP-1)和(H2dabco-O)K(- ClO4)3(H2dabco-O2+ = 1-羟基-1,4-二氮杂双环[2.2.2]辛烷-1,4-二鎓离子,记为DAP-O2),初步展示了A位点燃料阳离子对于氧平衡参数的优化能力[35]。值得一提的是,在这些分子钙钛矿化合物中,不含金属离子组分的DAP-4作为独特的成员,在炸药和推进剂方面展现出较好的应用前景,引起了较广泛的关注[36–38]。不过,分子钙钛矿含能材料的相关研究目前处于早期发展阶段,许多挑战性问题仍待解决。比如,含能材料的爆轰性能(通常是指爆速和爆压)与其晶体密度和生成焓这两个参数存在正相关性,因此如何在晶体结构中同时提高这两个参数一直是设计先进含能材料的重要问题之一 [39,40]。为了阐明结构细节与性能之间的调控关系,并获得比DAP-4综合性能更好的化合物,我们在DAP-4基础上通过精细调节A组分,设计合成了五个无金属化合物[41]。研究结果表明,在提高化合物氧平衡参数的同时,若能保持A组分有机阳离子的准球形结构以更好地匹配阴离子骨架,往往能获得较好的综合爆轰性能。不过,我们同时也发现,仅通过调整A位阳离子很难同时提高晶体密度和生成焓,因此这些无金属化合物未能在 DAP-4基础上大幅度地提升爆轰性能。

依据八面体BX6的不同连接方式,ABX3型钙钛矿结构大体可分为三种典型的子类[42]。其中,除了最常见的由BX6八面体以共顶点方式形成的立方型结构(以 CaTiO3为代表),由BX6八面体以共面方式形成的六方型结构(以BaNiO3为代表)也是一个常见的重要钙钛矿结构类型,并且预期同样能使燃料组分和氧化剂组分在分子水平上形成交替排列的紧密堆积结构。于是,为了探索具有六方型结构的分子钙钛矿含能化合物,我们重点考虑利用NH4+ 阳离子的衍生物作为无金属B位点组分进行了一些实验尝试。例如,与NH4+ 阳离子相比,其衍生离子NH3OH+ 和NH2NH3+ 阳离子具有较高的生成焓,而且可在晶体中形成较多的氢键相互作用,往往有利于设计合成出性能更高的晶态含能化合物[11,43,44]。基于这个研究思路,我们分别利用这两种阳离子,在室温水溶液条件下采用一步自组装合成方法,成功制备了两例新的无金属六方钙钛矿含能化合物(H2dabco)B(ClO4)3 (B = NH3OH+ 和NH2NH3+ ,分别对应DAP-6和DAP-7,见图1)。据我们所知,DAP-6和DAP-7是首例分别以 NH3OH+ 和NH2NH3+ 作为B位点而非A位点阳离子构筑的分子钙钛矿化合物[45–49]。本文中,我们对DAP-6和 DAP-7化合物的晶体结构、热稳定性和能量水平进行了实验和理论研究。结果表明,相比于以NH4+ 构筑的类似物(即DAP-4),DAP-6和DAP-7具有更高的晶体密度和生成焓,从而表现出较高的爆轰性能和理论比冲值(Isp),在炸药和推进剂领域中具有很好的应用前景。

《图1》

图1. 无金属六方钙钛矿含能化合物DAP-6和DAP-7的结构示意图。图中只展示一个完整的X位点ClO4阴离子,其余阴离子都以小绿色球表示,B位点阳离子(NH3OH+ 和NH2NH3+ )以洋红色球表示。

《2. 结果与讨论》

2. 结果与讨论

《2.1. 单晶结构》

2.1. 单晶结构

将反应母液缓慢蒸发数天后,得到了DAP-6和 DAP-7的单晶。单晶X射线衍射数据表明,化合物 DAP-6和DAP-7在223 K温度下分别结晶于单斜晶系的 P21P21/m空间群(表1),均为具有ABX3通式的六方钙钛矿型结构(即BaNiO3结构原型);其中,H2dabco2+ 为A位点阳离子,NH3OH+ 和NH2NH3+ 分别作为B位点阳离子,ClO4作为X位点阴离子。晶体结构由通过 B(ClO4)6八面体共面相连形成的无限{B(ClO4)3}n2n长链以及链间H2dabco2+阳离子组成(图1)。由于NH3OH+ (216 pm)和NH2NH3+ (217 pm)的等效离子半径比NH4+ (146 pm)的大了许多[50],DAP-6和DAP-7结构中每个相邻的B(ClO4)6八面体单元通过氢键作用以共面的方式相连从而构成六方钙钛矿型堆积结构,而非像DAP-4那样以共顶点方式相连而构成的立方钙钛矿型堆积结构(见下文)。DAP-6和DAP-7的结构中,最短的N··· O原子距离(其中,N和O原子分别来自B组分的NH3OH+ / NH2NH3+ 和X组分的ClO4)分别为2.88(5) Å(1 Å=10–10 m)和3.020(5) Å,表明DAP-6结构中NH3OH+ 和ClO4之间的氢键作用总体上强于DAP-7结构中NH2NH3+ 和ClO4之间的氢键作用力(表2)。因此,与DAP-7相比,DAP-6 结构中无限一维[B(ClO4)3}n2n链的堆积结构更加紧凑,并最终体现为,在223 K下,DAP-6(1.92 g·cm–3)的晶体密度略高于DAP-7(1.90 g·cm–3,见附录A中的表S1)。

《表1》

表1 两种无金属六方钙钛矿化合物的晶体学参数以及结构精修参数 

T: temperature; λ: wavelength; a, b, c: cell length; β: cell angle; V: cell volume; Z: formula units; Dc: crystal density; Rint: merging residual value; R1: unweighted residual factor; wR2: weighted residual factor; I: intensity of reflection; σ(I): estimated standard uncertainty of the reflection; CCDC: Cambridge Crystallographic Data Centre.

a Rint = Σ|Fo2 –<Fo2> |/ΣFo2 ; R1 = Σ||Fo| – |Fc||/Σ|Fo|; wR2 = {Σw[(Fo)2 – (Fc)2 ]2 / Σw[(Fo)2 ]2 }1/2; where Fo and Fc are the experimental and calculated structural factors, respectively, and w is a weight factor.

《表2》

表2 化合物DAP-6和DAP-7结构中部分重要氢键的参数 

Symmetry codes: a: 1 – x, y + 1/2, 1 – z; b: –x, y + 1/2, –z; c: 1 – x, y + 1/2, –z; d: 1 – x, y – 1/2, –z; e: 2 – x, y + 1/2, 1 – z; f: x, 1/2 – y, z; g: 1 – x, –y, 1 – z.

a D, H, and A stands for donor atom, hydrogen atom, and acceptor atom related in the hydrogen-bonding interactions.

在分子钙钛矿化合物中,之前还未见有B组分阳离子为非准球形或者含有双非氢原子单元的例子。为了详细了解这两例独特的六方钙钛矿化合物中B组分阳离子周围的超分子弱相互作用,我们分析了DAP-6中的 NH3OH+ 阳离子和DAP-7中的NH2NH3+ 阳离子的Hirshfeld表面。图2所示的Hirshfeld表面图采用归一化接触距离(dnorm)来表示,图中的红色、白色和蓝色分别表示该组分与周边分子间的接触距离短于、等于和长于范德华距离。DAP-6和DAP-7的晶体学不对称单元中分别包含四个NH3OH+ 阳离子和二分之一个NH2NH3+ 阳离子(处于晶体学镜面上)。由Hirshfeld表面分析可知(图2), DAP-6和DAP-7存在大比例的H··· O/N(或O/N··· H)分子间短接触,分别占总表面积的82.4%(四个NH3OH+ 阳离子的平均值)和89.5%(NH2NH3+ 阳离子),这些分子间短接触对应着B组分阳离子与其相邻分子之间的氢键相互作用。类似地,对DAP-6和DAP-7中的A组分阳离子(即H2dabco2+)的Hirshfeld表面分析结果表明,每个H2dabco2+阳离子均与相邻的ClO4阴离子形成了大量的C/N–H··· O氢键相互作用,相关的分子间短接触分别占总表面积的86.1%(DAP-6)和82.2%(DAP-7)。简而言之,DAP-6和DAP-7化合物中存在的大量氢键作用以及阴阳离子之间的库仑作用力,这些超分子作用力极大地促进了B(ClO4)6八面体以共面方式紧密堆积成一维{B(ClO4)3}n2n链结构,并使H2dabco2+阳离子与这些无机链进一步紧密结合,从而最终形成具有较紧密堆积的六方钙钛矿结构。

《图2》

图2. DAP-6中NH3OH+ 阳离子和DAP-7中NH2NH3+ 阳离子的Hirshfeld表面图,其中被分析组分表面图中的红色、白色和蓝色分别表示组分与周边分子间接触距离短于、等于和长于范德华距离。对称性代码:a: 1 – x, y + 1/2, 1 – z; b: –x, y + 1/2, –z; c: 1 – x, y + 1/2, –z; d: 1 – x, y – 1/2, –z; e: 2 – x, y + 1/2, 1 – z; f: x, 1/2 – y, z; g: 1 – x, –y, 1 – z; h: –x, –y, –z; i: –x, –1/2 + y, –z; j: x – 1, +y, –1 + z

《2.2. 热稳定性和长期稳定性》

2.2. 热稳定性和长期稳定性

采用差热分析仪(DTA)以5 °C· min–1升温速率对 DAP-6和DAP-7的热稳定性进行了表征。如图3所示,得益于组分内的强共价键及组分间的较强库仑吸引作用和氢键作用[3,10,32,41],DAP-6和DAP-7的起始分解温度(Td)分别为245.9 °C和375.3 °C,高于经典含能材料环三亚甲基三硝胺(RDX, 210.0 °C)和六硝基六氮杂异伍兹烷(CL-20, 215.0 °C)[10]。此外,DAP-6和DAP-7 的粉末样品分别在常温环境条件下保存了3个月和5个月之后,其粉末X射线衍射图谱(PXRD)仍保持不变(见附录A中的图S1和图S2),说明DAP-6和DAP-7在常温环境条件下可以长期稳定。

《2.3. 爆轰参数》

2.3. 爆轰参数

采用密度函数理论(DFT)和Kamlet-Jacobs (K-J) 扩展方程,我们计算了DAP-6和DAP-7的爆轰参数。结果表明(表3),无金属六方分子钙钛矿含能化合物 DAP-7具有比RDX更高的预测爆热、爆速和爆压,而 DAP-6具有比HMX更好的爆轰性能;特别地,DAP-6的预测爆热高达6.35 kJ·g–1,优于先前报道的所有分子钙钛矿含能材料,甚至稍优于CL-20(6.23 kJ·g–1)。

《表3》

表3 三个经典有机炸药和四个分子钙钛矿化合物的性能参数 

ρ: crystal density; Q: detonation heat; D: detonation velocity; P: detonation pressure; IS: impact sensitivity; FS: friction sensitivity; HMX: cyclotetramethylene tetranitramine; DAP-O4: (H2dabco-O)(NH4)(ClO4)3 (H2dabco-O2+ = 1-hydroxy-1,4-diazabicyclo[2.2.2]-octane-1,4-diium).

a The crystal densities estimated from capillary powder X-ray diffraction (PXRD) data collected at room temperature.

b The onset decomposition temperatures evaluated from DTA (5 °C·min–1).

c Oxygen balance based on CO2 for CaHbNcCldOe: OB = 1600[e – 2a – (bd)/2]/MW, where MW is molecular weight.

为了进一步揭示分子组分对爆轰性能的影响,我们将DAP-6与先前报道的立方型钙钛矿化合物中爆轰性能最好的成员,即(H2dabco-O)(NH4)(ClO4)3(DAP-O4, H2dabco-O2+ = 1-羟基-1,4-二氮杂双环[2.2.2]辛烷-1,4-二鎓离子)[32,41],进行比较分析。如图3所示,从化学式可看出,DAP-6和DAP-O4是同分异构体;DAP-6可以看作是将DAP-O4中A组分H2dabco-O2+阳离子中的氧原子转移至B组分的NH4+ 阳离子上,因此两者具有相同的化学式和氧平衡参数(–23.3%)。然而,DAP-6的爆轰参数整体优于DAP-O4,打破了原有分子钙钛矿含能材料的性能纪录。DAP-6的爆轰性能提升主要归功于它在阳离子生成焓和晶体密度这两个方面同时得到了提高。具体来说,DAP-6中NH3OH+ (669.5 kJ· mol–1)和H2dabco2+(1657.5 kJ· mol–1)的生成焓均分别高于 DAP-O4中相应的NH4+ (626.4 kJ·mol–1)和H2dabco-O2+ (1626.3 kJ·mol–1,见表2和图S3);另一方面,得益于六方紧密堆积方式,DAP-6具有比DAP-O4更高的晶体密度(1.90 g·cm–3 vs 1.85 g·cm–3),于是其爆轰性能进一步得到了提升。类似地,与DAP-4相比,DAP-7具有相同的A组分阳离子(H2dabco2+)、晶体密度(1.87 g·cm–3)以及稍差的氧平衡(–28.7% vs –27.9%),但是DAP-7 的爆轰参数仍可略高于DAP-4;这应该主要归功于两者在B组分阳离子的生成焓差异上,即DAP-7的NH2NH3+ 生成焓(770.0 kJ·mol–1)高于DAP-4的NH4+ 生成焓(626.4 kJ·mol–1)。

《图3》

图3. 六方钙钛矿化合物DAP-6与立方钙钛矿化合物DAP-O4之间的同分异构体关系。

《2.4. 比冲》

2.4. 比冲

比冲(Isp)是衡量固体推进剂性能的重要参数;我们依据爆炸反应和盖斯定律反推得到生成焓数据,再代入EXPLO5TM v6.04.02软件中,预测了系列化合物的比冲值(见表S3~S5)。结果表明(表3),DAP-7的计算比冲值(256.9 s)高于DAP-4(253.6 s)和HMX(250.8 s),而DAP-6的计算比冲值(265.3 s)不仅高于其同分异构体DAP-O4(262.5 s),甚至略高于CL-20(264.8 s)。 DAP-6和DAP-7具有较优异的比冲性能,可归因于两方面的优势。一者,如上文提到的,它们的阳离子组分具有较高的生成焓,可在分解过程中释放更多热值,从而提高气体产物的温度;二者,DAP-6和DAP-7的氢含量(质量分数)分别是4.03%和4.26%,均显著高于CL-20 (1.4%),因此它们的分解产物可以包含更高比例的水分子,从而降低气体产物的平均分子质量。

《2.5. 感度》

2.5. 感度

分别采用BFH-10 BAM撞击感度仪(OZM Research S.R.O.,捷克)和FSKM-10 BAM摩擦感度仪(OZM Research S.R.O.,捷克)测试了DAP-6和DAP-7的撞击感度和摩擦感度。测试结果见表3,DAP-6和DAP-7的撞击感度分别为12.0 J和27.5 J,与典型的高能炸药RDX (7.5 J)、HMX(7.0 J)和CL-20(4.0 J)相比,它们对撞击较钝感。相比之下,与先前报道的其他分子钙钛矿含能材料类似,DAP-6和DAP-7对摩擦较为敏感(FS ≤ 5 N),可能与分子钙钛矿的刚性结构骨架及其高比例的高氯酸根组分有较大关系。

《3. 结论》

3. 结论

综上所述,通过合理地选择分子组分,我们成功地以NH3OH+ 和NH2NH3+ 阳离子为B位阳离子,制备了两例新型无金属六方钙钛矿含能化合物,即DAP-6和 DAP-7。计算结果表明,基于较高生成焓的B组分阳离子以六方钙钛矿结构堆积方式形成的DAP-6和DAP-7,相较于立方钙钛矿含能材料类似物DAP-4,其爆轰性能得到了全面提升。DAP-6和DAP-7具有较高的热稳定性(Td分别为245.9 °C和375.3 °C)和爆轰性能(D分别为9.123 km· s–1和8.883 km· s–1P分别为38.1 GPa和 35.8 GPa),在炸药和推进剂领域具有较好应用前景。值得强调的是,与立方型钙钛矿结构的DAP-O4同分异构体相比,DAP-6具有更高的晶体密度和生成焓,在爆轰性能指标方面成为钙钛矿含能化合物的新记录保持者;尤其是,DAP-6具有很高的爆轰热值(Q = 6.35 kJ· g–1)和比冲值(Isp = 265.3 s),稍优于CL-20(Q = 6.23 kJ·g–1; Isp = 264.8 s)。本研究工作表明,与早期报道的立方钙钛矿结构一样,六方钙钛矿结构同样可以提供独具优势的结构模型,用于调节和优化含能材料的晶体密度、氧平衡以及生成焓等重要参数,据此发展具有实用前景的系列新型含能化合物。

《致谢》

致谢

本工作获得国家自然科学基金(21722107和 21821003)、广东省珠江人才计划“本土创新科研团队”(2017BT01C161)、广东省自然科学基金(2020A1515010460)项目资助,在此特别感谢。

《Compliance with ethics guidelines》

Compliance with ethics guidelines

Yu Shang, Zhi-Hong Yu, Rui-Kang Huang, Shao-Li Chen, De-Xuan Liu, Xiao-Xian Chen, Wei-Xiong Zhang and Xiao-Ming Chen declare that they have no conflict of interest or financial conflicts to disclose.

《Appendix A. Supplementary data》

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2020.05.018.