《1、 引言》

1、 引言

由多重耐药(multi-drug resistant, MDR)细菌引起的感染很难治疗,而且在临床机构中变得越来越常见。之前对耐药菌的关注主要集中在革兰阳性菌上,但近几年关注转变到了革兰阴性菌上[1]。由于抗菌药物的过度使用和错误使用,多重耐药革兰阴性菌在临床上的检出率不断上升,已成为全人类健康的巨大威胁。根据中国抗菌药物监测网(China antimicrobial surveillance network, CHINET)2018年的数据[2],约30%的临床分离株为革兰阳性菌,70%为革兰阴性菌。革兰阴性菌以大肠埃希菌、肺炎克雷伯菌和鲍曼不动杆菌最常见。这三种细菌是医院感染的主要机会致病菌,常引起尿路感染、手术部位感染、肺部感染、菌血症及败血症等。目前,临床分离的这三种主要革兰阴性菌对常用抗菌药物的耐药率呈上升趋势。中国美罗培南监测研究(Chinese Meropenem Surveillance Study, CMSS)[3] 的连续监测显示,从2010年到2018年,碳青霉烯类耐药大肠埃希菌(carbapenem-resistant E. coli, CREC)的检出率从0.5%增至3.5%,碳青霉烯类耐药肺炎克雷伯菌(carbapenem-resistant K. pneumoniae, CRKP)和碳青霉烯类耐药鲍曼不动杆菌(carbapenem-resistant A. baumannii, CRAB)的检出率随着时间的推移显著增加,分别从7.6%增至21.2%,从64.6%增至69.3%。CREC、CRKP和CRAB被世界卫生组织列为最关键的病原体,急需新型抗生素的研发[4]。

多重耐药革兰阴性菌的流行和新型抗菌药物的缺乏,促使临床医生重新评估使用一种古老的抗生素——多黏菌素。这种抗生素在20世纪70年代因为肾毒性和神经毒性而被弃用,但在畜牧业中被广泛用作生长促进剂。多黏菌素是治疗多重耐药革兰阴性菌感染的最后一道防线。在过去的几十年中,多黏菌素在体外对大多数多重耐药革兰阴性菌具有较强的抗菌活性。一项全球抗菌药物监测计划(SENTRY Antimicrobial Surveillance Program)报道称,2006—2009年,革兰阴性菌对多黏菌素的耐药性较低[5]。然而随着多黏菌素在临床上的频繁使用,多黏菌素耐药菌株在世界各国的报道越来越多[67]。尤其对于CRKP,多黏菌素耐药率在意大利高达43%(2013—2014年)[8]、西班牙为22.8%(2010—2012年)[9]、希腊为21.7%(2010—2013)[10]。微生物耐药性监测计划(EARS-Net)显示,17个欧洲国家的CRAB的总多黏菌素耐药率超过5%,其中希腊和意大利的CRAB多黏菌素耐药率超过80% [11]。尽管已报道的大肠埃希菌多黏菌素耐药率不高,但是从动物样本中分离的大肠埃希菌mcr-1基因的携带率呈指数增长[12]:2009年为5.2%,2014年为30%。哺乳动物和鸟类作为感染宿主,将多黏菌素耐药性传给人类的人畜共患病潜力巨大。

多黏菌素的耐药机制尚未完全清楚,但有一些分子机制已被确定。多黏菌素耐药的主要机制是通过在脂质A中加入阳离子基团来修饰脂多糖(lipopolysaccharid, LPS)。编码多黏菌素耐药的基因位于染色体或质粒上。LPS不仅是革兰阴性菌外膜(outer membrane, OM)的组成成分,还是重要的毒力因子,可以在动物体内诱导强烈的免疫反应[13]。因此,导致LPS修饰的突变同时也可能调节细菌的适应性和毒力。适应性成本和补偿性突变是耐药菌传播的关键。然而,关于多黏菌素耐药性的获得对革兰阴性菌适应性和毒力的影响仍知之甚少。最近多黏菌素耐药率的增加进一步表明,有必要进一步了解不同耐药机制与毒力适应性之间的相互关系。本文综述了多黏菌素耐药机制对临床上重要的革兰阴性菌(鲍曼不动杆菌、肺炎克雷伯菌和大肠埃希菌)的影响,探讨了特定突变对特定菌株适应性成本和毒力的影响。

《2、 多黏菌素耐药菌感染患者的临床结局》

2、 多黏菌素耐药菌感染患者的临床结局

对于严重的多重耐药革兰阴性菌感染,多黏菌素被认为是最有效的抗生素。因此,多黏菌素耐药性是治疗此类感染的严重阻碍。新加坡一家综合医院进行的回顾性研究发现,碳青霉烯类耐药的肠杆菌科(carbapenem-resistant Enterobacteriaceae, CRE)一旦出现多黏菌素耐药性,会导致不良的临床结局[14]。与多黏菌素敏感CRAB组相比,感染多黏菌素耐药CRAB组患者的30天死亡率更高(50%)、重症监护室住院时间更长、合并感染发生率更高。Qureshi等[15]也发现,在20位多黏菌素耐药CRAB感染的患者中,30天的全因死亡率为30%。耐多黏菌素的CRE和CRAB的出现给临床造成了巨大的问题,原因是没有有效的抗生素来治疗由多黏菌素耐药性引起的感染。Qureshi等[15]还指出,近期的多黏菌素暴露史是多黏菌素耐药性产生的一个重要风险因素,因为在20位多黏菌素耐药CRAB感染的患者中,有19位曾使用过多黏菌素;虽然没有说明多黏菌素是如何给药的(如剂量、疗程、单药治疗或联合治疗),但是这些抗生素的不当使用可能会促进病原体耐药性的发展。因此,应重视多黏菌素的正确给药方式。2019年,6个国际学术组织报道了多黏菌素最佳使用的共识指南[16]。这份实用指南提供了关于多黏菌素药物选择、剂量、单药治疗或联合治疗以及肝肾功能不全患者的特殊给药方案的详细建议。临床上应严格规范多黏菌素的使用,避免多黏菌素耐药性的产生。多黏菌素不应用于无症状CRE携带者的去定植[17]或用于预防性药物治疗的选择性消化道净化[18]。

《3、 多黏菌素的作用机制》

3、 多黏菌素的作用机制

在革兰阴性菌中,OM是一个可渗透的保护屏障,可以抵御外部攻击,包括各种抗菌药物[1920]。多黏菌素可直接与LPS的聚阴离子脂质A结合[21],破坏OM的结构和功能。具体的分子机制如下:多黏菌素通过与脂质A中的α,γ-二氨基丁酸的初始静电相互作用实现与LPS的结合,从而取代LPS中的二价阳离子Ca2+和Mg2+ [19,22]。然后,多黏菌素分子将其疏水结构域插入脂多糖的脂肪酰链,接着插入内膜(inner membrane, IM)小叶[2325],破坏细菌膜的结构和功能,导致细胞质内容物泄露,最后导致细菌死亡[26]。

与多黏菌素的抗菌活性相关的另一个酶是细胞胞质膜中的必需呼吸酶[II型烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NADH)-醌氧化还原酶] [27]。几项研究表明,多黏菌素可以通过抑制鲍曼不动杆菌、肺炎克雷伯菌和大肠埃希菌的II型NADH-醌氧化还原酶的活性,以浓度依赖的方式抑制细菌呼吸[2830]。

《4、 多黏菌素的耐药机制》

4、 多黏菌素的耐药机制

《4.1 染色体和质粒上的基因介导的LPS修饰》

4.1 染色体和质粒上的基因介导的LPS修饰

已经在鲍曼不动杆菌、肺炎克雷伯菌和大肠埃希菌中发现多黏菌素获得性耐药,主要原因是脂质A中添加的磷酸乙醇胺(phosphoethanolamine, pEtN)和(或)4-氨基-4-脱氧-L-阿拉伯糖(4-amino-4-deoxy-L-arabinose, L-Ara4N)阳离子基团修饰了LPS。LPS的修饰主要由PmrA/PmrB和PhoP/PhoQ双组份系统调控。具体机制如下(图1):pEtN的合成及将pEtN添加到LPS上是由pmrCAB操纵子介导的,而L-Ara4N的合成及将L-Ara4N添加到LPS上是由pmrHFIJKLM操纵子介导的。在PmrA/PmrB双组份系统中,PmrB是位于IM中的一种传感器酪氨酸激酶,可以磷酸化PmrA(PmrA是PmrB的一种反应调节因子)[3132]。磷酸化的PmrA结合到pmrCABpmrHFIJKLM操纵子的启动子区域并相继激活它们的转录,合成阳离子基团pEtN和L-Ara4N,然后将pEtN和L-Ara4N添加到脂质A中[3233]。

《图1》

图1 多黏菌素耐药的生化机制及分子机制。(a)三种革兰阴性菌不同的多黏菌素耐药机制。I:多黏菌素敏感的革兰阴性菌的细胞膜组成。II:大肠埃希菌、肺炎克雷伯菌和鲍曼不动杆菌通过LPS的修饰(绿色三角形代表添加的阳离子基团)获得多黏菌素耐药性。III:鲍曼不动杆菌通过完全丧失LPS获得多黏菌素耐药性。IV:肺炎克雷伯菌通过荚膜多糖(capsular polysaccharide, CPS)过表达获得多黏菌素耐药性。(b)由染色体和质粒上编码的基因介导的LPS修饰。P代表磷酸基团。MgrB:Mg2+响应基因B;CrrA/B/C:多黏菌素耐药性调节基因A/B/C;Mcr:可移动多黏菌素耐药基因。

脂质A的化学修饰也可以通过另一个双组份系统PhoP/PhoQ进行调节[3436]。与PmrA/PmrB一样,位于IM中的传感器酪氨酸激酶PhoQ可以磷酸化PhoP(PhoP是PhoQ的一种反应调节因子)[3435]。磷酸化的PhoP可以直接结合并激活pmrHFIJKLM操纵子的转录,随后将L-Ara4N添加到LPS中[32]。PhoP/PhoQ信号通路也可以通过PmrA/PmrB信号通路中的基因来介导脂质A修饰。此外,磷酸化的PhoP还可以通过PmrD连接蛋白间接激活PmrA/PmrB双组份系统,保护PmrA免于去磷酸化[37]。

在肺炎克雷伯菌中,PmrA/PmrB和PhoP/PhoQ双组分系统分别由CrrA/CrrB双组份系统[38]和mgrB [3944]进一步调控。CrrA/CrrB的生理功能尚未完全阐明。CrrB失活可促进pmrHFIJKLMpmrCAB操纵子的表达[38]。MgrB是一种小的跨膜蛋白[45],在PhoP/PhoQ双组分系统的负反馈调节中起着关键作用。mgrB基因在PhoP磷酸化后上调。上调的MgrB蛋白抑制phoQ的表达,导致磷酸化PhoP的减少[45]。mgrB的失活促进PhoP蛋白的过度表达,导致高水平的脂质A修饰。

除了上述染色体基因外。mcr是一个新发现的存在于不同质粒上的基因,与多黏菌素耐药性有关。该基因编码pEtN转移酶将pEtN添加到脂质A中。2015年,Liu等[46]首次鉴定了质粒携带的移动性多黏菌素耐药基因mcr-1。此后,许多研究发现了其他mcr等位基因,包括mcr-2-9 [4751]。已在几种肠杆菌科细菌,如大肠埃希菌[46]、肺炎克雷伯菌[46]和肠沙门氏菌[52]中发现mcr基因。

《4.2 基因介导的LPS的丢失》

4.2 基因介导的LPS的丢失

鲍曼不动杆菌多黏菌素产生耐药性的另一个机制是脂质A合成基因突变导致细胞表面LPS的完全丧失。LPS在细胞质中通过LpX通路合成[5354](包括lpxAlpxClpxD)合成,并通过LpT通路转运至OM [55]。由替换、移码、截断或插入失活引起的lpxAlpxClpxD突变导致多黏菌素耐药性。只在鲍曼不动杆菌中观察到了lpx介导的多黏菌素耐药性。

《4.3 荚膜多糖的过表达》

4.3 荚膜多糖的过表达

肺炎克雷伯菌对多黏菌素产生耐药性的另一个机制是荚膜多糖(capsular polysaccharide, CPS)的过表达,CPS能通过与LPS的静电相互作用而附着在细胞表面[56]。一项研究表明,CPS限制了肺炎克雷伯菌中多黏菌素和LPS的相互作用,并且纯化的CPS直接与多黏菌素结合[56]。

综上所述,大肠埃希菌和肺炎克雷伯菌可以通过染色体基因(pmrA/pmrBphoP/phoQ)以及质粒介导的多黏菌素耐药基因(mcr)介导LPS修饰,从而获得多黏菌素耐药性。此外,肺炎克雷伯菌可以通过crrA/crrBmgrB突变以及CPS的过度表达获得多黏菌素耐药性。已在大肠埃希菌和肺炎克雷伯菌中发现质粒介导的多黏菌素耐药基因mcr-1,但在鲍曼不动杆菌中尚未发现。尽管如此,鲍曼不动杆菌可以通过脂质A合成基因突变导致LPS完全丧失而获得多黏菌素耐药性(图1)。

《5、 不同多黏菌素耐药机制对毒力和适应性的影响》

5、 不同多黏菌素耐药机制对毒力和适应性的影响

毒力被定义为“微生物对宿主造成伤害的相对能力”[57]。病原体能否在宿主体内引起疾病,取决于细菌毒力和宿主免疫之间的平衡。细菌毒力因子按其来源、性质和功能可分为外毒素和内毒素。LPS的脂质A通过细胞因子[肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)和白介素-8(interleukin-8, IL-8)]的初始释放在免疫和炎症反应中发挥关键作用[58]。因此,革兰阴性菌中的LPS被认为是一种内毒素[59]。除了LPS,在肺炎克雷伯菌中观察到的其他毒力因子包括CPS、铁载体和菌毛[60]。大肠埃希菌还可以显示多种毒力因子,如菌毛、鞭毛、非菌毛黏附素、α-溶血素、细胞致死性肿胀毒素、铁获取系统、荚膜和OM蛋白A(OM protein A, OmpA)[61]。鲍曼不动杆菌有复杂的毒力因子[62],包括LPS [6364]、生物膜、OmpA、胞外多糖和荚膜[65]、外排泵和青霉素结合蛋白。

耐药性通常与细菌适应性的下降相关[66],抗生素的过度使用会对细菌产生强烈的选择压力,使其获得耐药性。当抗生素选择压力降低时,与耐药相关的适应性代价可能使耐药菌难以与敏感菌竞争,从而很快从群体中被清除[66]。然而,通过补偿性突变、基因共选择和未知因素,耐药菌可以抵消生物成本,在细菌群体中稳定存在[66]。

有文献报道了多黏菌素耐药革兰阴性菌毒力和适应性的改变。研究对象多黏菌素耐药菌株是在用多黏菌素治疗期间直接从患者中获得的,或是将临床来源的敏感菌株或实验室标准菌株暴露于浓度增加的多黏菌素中,以诱导体外耐药菌株的产生,后续进一步评估多黏菌素耐药菌和敏感菌的毒力和适应性。毒力的评估可以使用丽隐杆线虫(Caenorhabditis elegans, C. elegans)、大蜡螟(Galleria mellonella, G. mellonella)和小鼠感染模型。

用宿主的死亡率或宿主内细菌的繁殖率来衡量毒力[67]。耐药的适应性成本通常是通过测量敏感菌和耐药菌在体外的指数增长率以及计算体内和体外的竞争指数来评估(图2)[66]。附录A中的表S1列出了不同多黏菌素耐药机制对鲍曼不动杆菌、肺炎克雷伯菌和大肠埃希菌的毒力和适应性的影响。

《图2》

图2 耐药性对适应性和毒力影响的评估方法。研究对象多黏菌素耐药菌株是从临床患者中分离获得,或是多黏菌素敏感菌株通过体外诱导耐药获得。毒力的评估常使用丽隐杆线虫(Caenorhabditis elegans, C. elegans)、大蜡螟(Galleria mellonella, G. mellonella)和小鼠感染模型。耐药的适应性成本通常是通过测量敏感菌和耐药菌在体外的指数增长率以及计算体内和体外的竞争指数来评估。

《5.1 鲍曼不动杆杆菌》

5.1 鲍曼不动杆杆菌

《5.1.1. 和突变对毒力和适应性的影响》

5.1.1. 和突变对毒力和适应性的影响

临床鲍曼不动杆菌中pmrApmrB突变引起的多黏菌素耐药性常常导致毒力和适应性降低。Hraiech等[68]研究了从肺炎患者分离出的两株鲍曼不动杆菌:一株对多黏菌素敏感,一株对多黏菌素耐药。多黏菌素耐药性是由pmrA(E8D)突变和前噬菌体缺失引起的[68]。在体外,耐药菌的生长速度比敏感菌慢[68]。在大鼠肺炎感染模型中,与受敏感菌感染的大鼠相比,受耐药菌感染的大鼠表现出较轻的症状,如细菌计数较低、全身传播受限、肺损伤较轻、预后较好[68]。鲍曼不动杆菌临床分离株通过pmrA突变获得多黏菌素耐药性,包括单一氨基酸替换,如M12K [69]、D82G [70]和S119T [70],在体内和体外都出现毒力受损和适应性降低[6970]。在体内耐药性的发展过程中,Jones等[71]发现在同一患者中早期分离的多黏菌素耐药菌株毒力胜过晚期分离的多黏菌素耐药菌株的毒力。然而,早期分离和晚期分离得到的多黏菌素耐药菌毒力基因未出现突变[71]。晚期分离出的耐药菌株毒力的损失可能是由翻译后修饰引起的[71]。

鲍曼不动杆菌通过不同的pmrB突变,包括单个氨基酸替换P233S、P170L、G21V、V227A、I232T、A28V和S17R,以及Δ19和ΔL9~G12获得多黏菌素耐药性[7078]。大多数突变与适应性成本降低和毒力受损有关,但对于特定的pmrB突变(P233S和P170L)却有一些相互矛盾的结果。鲍曼不动杆菌的两个分离株Ab249和Ab347分别携带pmrB P233S和P170L突变。两株菌株生长对数期的生长速率都有所下降,体内、体外毒力出现了减弱[7273]。鲍曼不动杆菌获得多黏菌素耐药性,使得在生物膜形成和氧化应激反应中具有重要功能的蛋白质表达不足[72]。毒力的降低可能与初始细胞黏附的减少以及随后生物膜形成的减少有关[73]。然而,Leite等[70]表明,携带pmrB P170L突变的多黏菌素耐药鲍曼不动杆菌比敏感菌对大蜡螟毒力更强。然而,值得注意的是,Leite等[70]研究了从不同患者中分离的鲍曼不动杆菌;因此,该菌株的遗传背景可能不同。

Durante-Mangoni等[75]报道了一种具有pmrB P233S突变的耐药临床菌株,但耐药菌株与敏感菌株相比,毒力和适应性下降。Wand等[79]发现pmrB P233S突变并不总是导致毒力下降。12株鲍曼不动杆菌对多黏菌素敏感,经体外诱导耐药,获得多黏菌素耐药株。其中,在大蜡螟感染模型中,pmrB中有17~26 dup和T235I突变的两个耐药菌株的毒力与相应亲本菌株的毒力相似[79]。具有pmrB突变A227V [80]、N353Y [80]、S17R [79]、R134C [81]和G272D [82]的鲍曼不动杆菌的多黏菌素耐药菌株出现体内、体外适应性和毒性降低。

《5.1.2. 、和突变对毒力和适应性的影响》

5.1.2. 、和突变对毒力和适应性的影响

已发表的研究[7980,8285]都支持lpx基因突变与毒力受损和适应性成本增加有关的观点。Carretero-Ledesma等[83]发现,由lpxAlpxClpxD突变引起的LPS缺陷株比相应的临床亲本多黏菌素敏感株能诱导更低的TNF-α和IL-6血清水平,并在小鼠系统感染模型中引起更低的死亡率。LPS的丧失也会影响生物膜的生成和表面运动[83]。Wand等[79]发现,由lpxA(E216*)、lpxC(I253N、F191L和A82E)或lpxD(K318移码突变)的单一突变或lpxClpxC⸬ISAba1)的失活引起的临床鲍曼不动杆菌多黏菌素耐药与大蜡螟的生长率和毒力降低相关。研究者还比较了pmrBlpx突变对适应性和毒力的影响,结果表明,lpx突变在适应性和毒力的改变中起着更重要的作用[79]。除了pmrlpx外,还研究了临床多黏菌素耐药鲍曼不动杆菌中pmrC同源物eptA的突变和eptA上游ISAba1的点突变[76],这些菌株的适应性和毒力没有降低。然而,目前对eptA与多黏菌素耐药性之间的关系了解有限。

《5.2 肺炎克雷伯菌和大肠埃希菌》

5.2 肺炎克雷伯菌和大肠埃希菌

《5.2.1. 和突变对毒力和适应性的影响》

5.2.1. 和突变对毒力和适应性的影响

关于由pmrA/pmrBphoP/phoQ突变引起的对多黏菌素耐药肺炎克雷伯菌的适应性和毒力的研究很少。在一项研究中,在pmrA(G53C)、pmrB(229~261 dup、P95L、G53C、213~261 dup、D150Y、Δ51~Δ59、213~261 dup和T157P)和phoQ(L348Q和T244N)中观察到突变[86]。然而,在大蜡螟感染模型中观察到的特定耐药基因突变位点与毒力变异之间没有明确的关联[86]。而且,适应性的改变似乎更多地受特定菌株遗传背景的影响,有些菌株能够适应不同的耐药突变,而没有显著的适应性代价。然而,在另一项研究中观察到黏菌素耐药肺炎克雷伯菌毒力和适应性降低[87]。这些菌株的CPS产生减少、血清抗性降低、生物膜形成减少和生长速率降低[87]。通过基质辅助激光解吸/电离飞行时间(matrix-assisted laser desorption/ionization-time of flight, MALDI-TOF)质谱分析发现,在多黏菌素耐药菌株中添加L-Ara4N和棕榈酸酯后,脂质A结构发生了改变[87]。

《5.2.2. 突变对毒力和适应性的影响》

5.2.2. 突变对毒力和适应性的影响

Arena等[88]利用大蜡螟感染模型,比较了两株产碳青霉烯酶(K. pneumoniae carbapenemase, KPC)的ST258型肺炎克雷伯菌与插入失活的mgrB突变株的毒力。mgrB突变株表现出与亲本菌株相似的毒力水平。另一项研究还发现,当通过体外竞争实验进行评估时,由mgrB插入失活引起的多黏菌素耐药菌株和敏感菌株之间的适应性没有显著差异[89]。Kidd等[90]揭示,mgrB突变诱导phoP/phoQ介导的脂质A重塑,这不仅导致多黏菌素耐药性,而且会通过抑制早期宿主防御反应的激活来促进肺炎克雷伯菌的毒力[90]。总的来说,失活mgrB不会导致毒力显著降低或适应性成本降低。

《5.2.3. 突变对毒力和适应性的影响》

5.2.3. 突变对毒力和适应性的影响

Tietgen等[91]将携带mcr-1的表达载体转移到大肠埃希菌J53和肺炎克雷伯菌PRZ受体菌中。竞争实验表明,大肠埃希菌J53受体菌与亲本菌株的生长速率相同,而肺炎克雷伯菌PRZ受体菌的生长速率低于亲本菌株。在人肺上皮细胞A549和大蜡螟感染模型中,大肠杆菌J53受体菌和肺炎克雷伯菌PRZ受体菌的毒力没有因为mcr-1的转入而发生改变[91]。在肺炎克雷伯菌中观察到由获得mcr-1引起的适应性成本,但在大肠埃希菌中没有观察到。这与mcr-1在大肠埃希菌中比在肺炎克雷伯菌中更常见的现象一致。而在另一项研究中,mcr-1阳性肺炎克雷伯菌的体内外生长率降低[92]。

《6、 其他抗菌肽耐药性产生的适应性成本》

6、 其他抗菌肽耐药性产生的适应性成本

杆菌肽是一种重要的肽类抗生素,主要由地衣芽孢杆菌和枯草芽孢杆菌产生[93]。杆菌肽和多黏菌素已被广泛用作家畜的生长促进剂[94]。杆菌肽通过抑制去磷酸化破坏大多数革兰阳性菌和一些革兰阴性菌的细胞壁合成,最终导致细胞内容物泄漏和细胞死亡。然而,与多黏菌素不同,对杆菌肽的耐药性似乎总是​​与更高的适应性有关。一项研究报道了一种新型膜转运蛋白模块SstFEG在杆菌肽抗性中的作用,这种膜转运蛋白模块不仅作为杆菌肽抗性的外排泵,而且在猪链球菌中作为毒力相关蛋白发挥作用[95]。杆菌肽抗性与乳酸乳球菌的适应性增加有关,主要表现为对杆菌肽耐药的乳酸乳球菌的生长速度加快和生物量增加一倍。研究人员利用这一现象来改善乳酸乳球菌的大规模生产,并获得所需的乳酸链球菌素A分泌,乳酸链球菌素A是一种高效且安全的食品防腐剂[96]。这是一个将细菌耐药性和适应性联系起来发展经济的好例子。

《7、 总结》

7、 总结

对于鲍曼不动杆菌,大多数文献集中在由pmrpholpx引起的多黏菌素耐药性对适应性和毒力的影响。大多数研究报道多黏菌素耐药鲍曼不动杆菌的毒力降低和适应性降低。此外,导致LPS完全丧失的lpx突变比导致LPS修饰的pmrpho突变对适应性和毒力的影响更大[79]。然而,相同的突变可能对适应性成本和毒力有不同的影响。例如,在一些研究中,pmrB P170L和P233S突变降低了适应性和毒力[7273,79],而在另一些研究中则相反[70,75,79]。生物成本的补偿可能是由于其他基因中存在代偿性突变。总的来说,多黏菌素耐药引起的适应性成本将有助于限制多黏菌素耐药鲍曼不动杆菌在临床环境中的传播。这一现象与观察到的多黏菌素耐药鲍曼不动杆菌在临床仅呈散发性感染是一致的。

对于肺炎克雷伯菌,大多数研究集中在pmrphomgrBmcr-1突变引起多黏菌素耐药对适应性成本和毒力的影响方面。大多数研究表明,具有pmrpho突变的多黏菌素耐药菌株的毒力和适应性降低,而具有mgrB突变的多黏菌素耐药菌株没有变化。研究发现,获得mcr-1所产生的适应性成本取决于物种,大肠埃希菌没有产生适应性成本,而肺炎克雷伯菌产生了适应性成本[91]。然而,一些研究表明,获得mcr-1可以降低毒力[92]。

与鲍曼不动杆菌相比,多黏菌素耐药基因突变与肺炎克雷伯菌的适应性和毒力之间几乎没有直接关联[86]。肺炎克雷伯菌的毒力和生物成本的改变可能与试验菌株的遗传背景有关。临床菌株,尤其是从不同患者分离的菌株具有不同的遗传背景。例如,从不同患者分离的菌株可能由于携带不同的毒力基因和ST分型而在毒力和适应性的基线水平上存在显著差异。

对于大肠埃希菌来说,有关多黏菌素耐药机制对其毒力和适应性影响的研究很少。目前的研究主要观察了获得mcr-1对毒力和适应性成本的影响[91],但尚未发现这种获得会改变毒力和适应性[91]。

总之,耐药菌的适应性成本可能是逆转耐药性的关键。大多数多黏菌素耐药机制与适应性和毒力的降低有关,导致在缺乏抗生素的情况下,与敏感菌株相比,耐药菌株的竞争力降低。然而,并非所有多黏菌素耐药菌都表现出适应性和毒力下降;有些菌株的毒力与其对应的敏感菌株相同或更高,并且没有表现出适应代价。因此,必须警惕这些具有不变或更高毒力和适应性的多黏菌素耐药菌株的流行,因为这些菌株更有可能在临床环境中存活,并成为多黏菌素耐药性传播的重要因素。造成这种现象的原因尚未完全清楚。补偿性的无成本突变和基因共选择可能是消除耐药细菌的障碍[66]。因此,需要进行更深入的基础研究,以充分了解耐药性与细菌生物学之间的相互作用,从而制定控制多黏菌素耐药菌株传播的干预措施。