更多

在工业过程中,软测量技术被广泛用于预测难以测量的质量变量。构建一个应对过程非平稳性的自适应模型非常必要。本文针对非平稳过程,设计了一种基于含有隐变量贝叶斯网络的质量相关局部加权软测量方法。提出一种有监督贝叶斯网络提取质量相关的隐变量,并应用于一种双层相似度测量算法。所提软测量方法试图通过质量相关信息为非平稳过程寻找到一般方法,且详细解释了局部相似度和窗口置信度的概念。通过一个数值算例和脱丁烷塔的应用验证了所提方法的性能。结果表明所提方法预测关键质量变量的精确度优于竞争方法。


, 等
随着互联网技术飞速发展和大数据时代到来,越来越多网络空间安全文本出现在互联网上。这些文本不仅包括安全概念、事件、工具、指南和政策,还包括风险管理方法、最佳实践、保证和技术等。整合大规模、异构和非结构化的网络空间安全信息,对网络空间安全实体进行识别和分类,有助于处理和解决网络空间安全问题。由于网络空间安全领域文本的复杂性和多样性,使用传统的命名实体识别(NER)方法难以识别该领域中的安全实体。本文介绍该领域NER的各种方法和技术,包括基于规则的方法、基于字典的方法和基于机器学习的方法,并讨论该领域NER研究面临的问题,如实体词组的结合与分离、非标准化的命名约定、缩写和大量嵌套等。最后,提出NER在网络空间安全方面的3个研究方向:(1)应用无监督或半监督技术;(2)开发更全面的网络空间安全本体;(3)应用更加有效的深度学习模型。

为解决视频多目标跟踪问题,提出一种特征和度量联合学习的深度神经网络架构,称为关联相似度网络。关联相似度网络以端到端的方式学习跟踪轨迹和检测结果之间的关联相似度。针对有缺陷的检测结果,关联相似度网络同时学习矩形框回归、目标分类和相似度回归3个任务。不同于现有基于对比排序思想的方法,我们直接训练一个二分类器来学习跟踪轨迹与检测结果的关联相似度,同时设计了损失函数来约束匹配集合元素的个数。得益于上述设计,关联相似度网络不仅能够解决多目标跟踪问题中的匹配问题,还可以进行单目标跟踪。基于提出的关联相似度网络,设计了一个简单的多目标跟踪算法,在MOT16和MOT17测试集上的实验结果表明其有效性。

最优传输在工程、医疗等各领域扮演着重要角色,包括图形学中的曲面参数化、计算机视觉中的注册、深度学习中的生成模型等。对于平方距离传输成本,最优传输映射是Brenier势的梯度,可通过求解Monge-Ampère方程得到。此外,最优传输映射可归结为几何凸优化问题。Monge-Ampère方程高度非线性,在求解过程中,中间解需要始终保持严格凸。特别地,离散解的精确性严重依赖于目标测度的采样。因此,提出一种自适应采样算法,极大减少采样偏差,同时提高离散解的精确性和鲁棒性。实验结果验证了所提算法的有效性和高效性。

排行