资源类型

期刊论文 269

会议视频 34

会议信息 6

会议专题 1

年份

2023 31

2022 80

2021 32

2020 33

2019 19

2018 9

2017 12

2016 8

2015 7

2014 9

2013 7

2012 6

2011 3

2010 9

2009 11

2008 9

2007 10

2006 2

2005 3

2003 2

展开 ︾

关键词

绿色化工 8

人工智能 6

抗击疫情 6

4D打印 5

工程管理 4

2020 3

农业科学 3

增材制造 3

含能材料 2

大数据 2

形状记忆聚合物 2

智能材料 2

11 1

1860 MPa等级 1

2 1

2019 1

2D增材制造 1

3D打印 1

3D空心结构 1

展开 ︾

检索范围:

排序: 展示方式:

Phase equilibrium of the ternary system of NH 4 Cl—CaCl 2 —H 2 O at 50°C

Xia LI, Junsheng YUAN, Zhiyong JI, Jianxin CHEN,

《化学科学与工程前沿(英文)》 2010年 第4卷 第1期   页码 75-77 doi: 10.1007/s11705-009-0296-0

摘要: The equilibrium data on the ternary system of NHCl—CaCl—HO at 50°C were investigated using the wet-residue method. The experimental results show that there are three pure phase crystal areas of NHCl, 2NHCl·CaCl·3HO and CaCl·2HO, two mixture phase crystal areas of NHCl and 2NHCl·CaCl·3HO, and 2NHCl·CaCl·3HO and CaCl·2HO in the system. A new hydration double salt (2NHCl·CaCl·3HO) was found in the ternary equilibrium system for the first time.

Denitrification performance and sulfur resistance mechanism of Sm–Mn catalyst for low temperature NH-SCR

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 617-633 doi: 10.1007/s11705-022-2258-8

摘要: MnOx and Sm–Mn catalysts were prepared with the coprecipitation method, and they showed excellent activities and sulfur resistances for the selective catalytic reduction of NOx by NH3 between 50 and 300 °C in the presence of excess oxygen. 0.10Sm–Mn catalyst indicated better catalytic activity and sulfur resistance. Additionally, the Sm doping led to multi-aspect impacts on the phases, morphology structures, gas adsorption, reactions process, and specific surface areas. Therefore, it significantly enhances the NO conversion, N2 selectivity, and sulfur resistance. Based on various experimental characterization results, the reaction mechanism of catalysts and the effect of SO2 on the reaction process about the catalysts were extensively explored. For 0.10Sm–Mn catalyst, manganese sulfate and sulfur ammonium cannot be generated broadly under the influence of SO2 and the amount of surface adsorbed oxygen. The Bronsted acid sites strengthen significantly due to the addition of SO2, enhancing the sulfur resistance of the 0.10Sm–Mn catalyst.

关键词: MnOx     Sm–Mn     catalyst     NH3-SCR     sulfur resistance    

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 226-235 doi: 10.1007/s11705-022-2198-3

摘要: Prussian blue and its analogs are extensively investigated as a cathode for ammonium-ion batteries. However, they often suffer from poor electronic conductivity. Here, we report a Ni2Fe(CN)6/multiwalled carbon nanotube composite electrode material, which is prepared using a simple coprecipitation approach. The obtained material consists of nanoparticles with sizes 30–50 nm and the multiwalled carbon nanotube embedded in it. The existence of multiwalled carbon nanotube ensures that the Ni2Fe(CN)6/multiwalled carbon nanotube composite shows excellent electrochemical performance, achieving a discharge capacity of 55.1 mAh·g–1 at 1 C and 43.2 mAh·g–1 even at 15 C. An increase in the ammonium-ion diffusion coefficient and ionic/electron conductivity based on kinetic investigations accounts for their high performance. Furthermore, detailed ex situ characterizations demonstrate that Ni2Fe(CN)6/multiwalled carbon nanotube composite offers three advantages: negligible lattice expansion during cycling, stable structure, and the reversible redox couple. Therefore, the Ni2Fe(CN)6/multiwalled carbon nanotube composite presents a long cycling life and high rate capacity. Finally, our study reports a desirable material for ammonium-ion batteries and provides a practical approach for improving the electrochemical performance of Prussian blue and its analogs.

关键词: nickel ferrocyanides     NH4+     electrochemistry     Prussian blue     aqueous ammonium ion batteries    

Effective regeneration of thermally deactivated commercial V-W-Ti catalysts

Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE

《化学科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 38-46 doi: 10.1007/s11705-011-1167-z

摘要: An effective method for the regeneration of thermally deactivated commercial monolith SCR catalysts was investigated. Two types of regenerated solutions, namely NH Cl (1 mol/L) and dilute H SO (0.5 mol/L), were employed to treat the used catalyst. The effects of temperature and the regeneration process on the structural and textural properties of the catalysts were determined by X-ray diffraction, scanning electron microscopy, N adsorption/desorption, elemental analysis and Fourier transform infrared spectroscopy. The results suggest that the anatase phase of the used catalyst is maintained after exposure to high temperatures. Some of the catalytic activity was restored after regeneration. The catalyst regenerated by aqueous NH Cl had a higher activity than that of the catalyst treated by dilute H SO . The main reason is that the NH generated from the decomposition of NH Cl at high temperatures can be adsorbed onto the catalyst which promotes the reaction. The aggregated V O were partially re-dispersed during the regeneration process, and the intrinsic oxidation of ammonia with high concentrations of O is a factor that suppresses the catalytic activity.

关键词: V2O5-WO3/TiO2 catalysts     thermal deactivation     regeneration     NH4Cl     dilute H2SO4 solution    

CeO doping boosted low-temperature NH-SCR activity of FeTiO catalyst: A microstructure analysis and reaction

《环境科学与工程前沿(英文)》 2022年 第16卷 第5期 doi: 10.1007/s11783-022-1539-2

摘要:

• CeO2 doping significantly improved low-temperature NH3-SCR activity on FeTiOx.

关键词: NH3-SCR     CeO2 doping     Low-temperature NOx removal     Improved redox property     In situ XAFS analysis    

Influence of HS and NH on biogas dry reforming using Ni catalyst: a study on single and synergetic effect

《环境科学与工程前沿(英文)》 2023年 第17卷 第3期 doi: 10.1007/s11783-023-1632-1

摘要:

● NH3 in biogas had a slight inhibitory effect on dry reforming.

关键词: Biogas     Dry reforming     Sulfur poisoning     Ammonia     Synergetic effect     Hydrogen    

NH3OH+/NH2NH3+作为B位阳离子的无金属六方钙钛矿含能材料 Article

尚宇, 余志鸿, 黄瑞康, 陈劭力, 刘德轩, 陈晓娴, 张伟雄, 陈小明

《工程(英文)》 2020年 第6卷 第9期   页码 1013-1018 doi: 10.1016/j.eng.2020.05.018

摘要: 文中通过合理地选择分子组分,经由易于规模放大的简单合成路线,以NH3OH+NH2NH3+分别作为B位点阳离子构筑了两例无金属六方钙钛矿含能材料(H2dabco)B(ClO4)3(分别命名为DAP-6和DAP-7,其中H2<与基于NH4+阳离子构筑的立方钙钛矿类似物(H2dabco)(NH4)(ClO4)

关键词: 含能材料     单质炸药     固体推进剂     无金属六方钙钛矿    

Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption

《化学科学与工程前沿(英文)》 2022年 第16卷 第9期   页码 1387-1398 doi: 10.1007/s11705-022-2154-2

摘要: UiO-66-NH2 is an efficient material for removing pollutants from wastewater due to its high specific surface area, high porosity and water stability. However, recycling them from wastewater is difficult. In this study, the cellulose nanofibers mat deacetylated from cellulose acetate nanofibers were used to combine with UiO-66-NH2 by the method of in-situ growth to remove the toxic dye, rose bengal. Compared to previous work, the prepared composite could not only provide ease of separation of UiO-66-NH2 from the water after adsorption but also demonstrate better adsorption capacity (683 mg∙g‒1 (T = 25 °C, pH = 3)) than that of the simple UiO-66-NH2 (309.6 mg∙g‒1 (T = 25 °C, pH = 3)). Through the analysis of adsorption kinetics and isotherms, the adsorption for rose bengal is mainly suitable for the pseudo-second-order kinetic model and Freundlich model. Furthermore, the relevant research revealed that the main adsorption mechanism of the composite was electrostatic interaction, hydrogen bonding and π–π interaction. Overall, the approach depicts an efficient model for integrating metal-organic frameworks on cellulose nanofibers to improve metal-organic framework recovery performance with potentially broad applications.

关键词: UiO-66-NH2     cellulose nanofibers     rose bengal     adsorption     mechanism    

Electrocatalytic reduction of NO to NH in ionic liquids by P-doped TiO nanotubes

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 726-734 doi: 10.1007/s11705-022-2274-8

摘要: Designing advanced and cost-effective electrocatalytic system for nitric oxide (NO) reduction reaction (NORR) is vital for sustainable NH3 production and NO removal, yet it is a challenging task. Herein, it is shown that phosphorus (P)-doped titania (TiO2) nanotubes can be adopted as highly efficient catalyst for NORR. The catalyst demonstrates impressive performance in ionic liquid (IL)-based electrolyte with a remarkable high Faradaic efficiency of 89% and NH3 yield rate of 425 μg·h−1·mgcat.−1, being close to the best-reported results. Noteworthy, the obtained performance metrics are significantly larger than those for N2 reduction reaction. It also shows good durability with negligible activity decay even after 10 cycles. Theoretical simulations reveal that the introduction of P dopants tunes the electronic structure of Ti active sites, thereby enhancing the NO adsorption and facilitating the desorption of *NH3. Moreover, the utilization of IL further suppresses the competitive hydrogen evolution reaction. This study highlights the advantage of the catalyst−electrolyte engineering strategy for producing NH3 at a high efficiency and rate.

关键词: nitric oxide reduction reaction     electrcatalysis     ammonia production     phosphorus-doped titania    

δN-stable isotope analysis of NH: An overview on analytical measurements, source sampling and its source

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1414-6

摘要:

• Challenges in sampling of NH3 sources for d15N analysis are highlighted.

关键词: Aerosol ammonium     Atmospheric gaseous ammonia     Isotope fingerprinting     Isotope-based source apportionment     Ammonia gas-to-particle conversion    

Low-temperature selective catalytic reduction of NO with NH based on MnO-CeO/ACFN

SHEN Boxiong, LIU Ting, SHI Zhanliang, SHI Jianwei, YANG Tingting, ZHAO Ning

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 325-329 doi: 10.1007/s11705-008-0053-9

摘要: MnO-CeO/ACFN were prepared by the impregnation method and used as catalyst for selective catalytic reduction of NO with NH at 80°C–150°C. The catalyst was characterized by N-BET, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The fraction of the mesopore and the oxygen functional groups on the surface of activated carbon fiber (ACF) increased after the treatment with nitric acid, which was favorable to improve the catalytic activities of MnO-CeO/ACFN. The experimental results show that the conversion of NO is nearly 100% in the range 100°C–150°C under the optimal preparation conditions of MnO-CeO/ACFN. In addition, the effects of a series of performance parameters, including initial NH concentration, NO concentration and O concentration, on the conversion of NO were studied.

关键词: preparation     conversion     favorable     selective catalytic     MnO-CeO/ACFN    

ThMn12型永磁合金 Review

Schönhöbel, A. Martín-Cid, J.M. Barandiaran, D. Niarchos

《工程(英文)》 2020年 第6卷 第2期   页码 140-146 doi: 10.1016/j.eng.2018.12.011

摘要:

具有四方ThMn12型结构的富铁化合物有潜力满足当下人们对于高磁能积、工作温度为150~200 ℃的贫稀土永磁体的需求。尽管磁体制备技术的发展滞后于相关磁性材料的研究是正常的,但对于ThMn12型磁性材料而言,这种研究进展的差异非常显著。近年来,随着以含少量结构稳定元素(如SmFe11V或Sm0.8Zr0.2Fe9.2Co2.3Ti0.5)或者不含该类元素的材料(如SmFe9.6Co2.4薄膜)为基础所合成的具有优异内禀磁性化合物研究的突破,这一差距进一步扩大。在日益强大的理论计算的帮助下,人们对于理想的化合物的探寻从未停步。遗憾的是,基于聚合物键合填隙改性粉末的磁体的研究仍然处于边缘阶段。人们发现,引入镧(La)可以提高Sm(Fe,Ti)12中少数低熔点相的稳定性,从而首次使得液相烧结成为可能。然而,La金属的高反应活性会明显地破坏材料的矫顽力(Hc)。最初被抑制的ThMn12型相的可控结晶使得“块状”磁硬化成为可能,这不仅在Sm-Fe-V合金中可以实现(自20世纪90年代便为人所知),并且在添加La的(Ce,Sm)(Fe,Ti)12合金中也可以实现。然而,块状硬化所得的合金的性能仍然不能令人满意。机械化学合成的(Sm,Zr)(Fe,Si)12和(Sm,Zr)(Fe,Co,Ti)12粉末可能适合烧结成具有高强度的全致密磁体,尽管在此之前,两者都已开发出较高的各向异性,而后一种合金已开发出较高的矫顽力。

关键词: 永磁体,稀土永磁体,ThMn 12 结构    

Ammonia adsorption on graphene and graphene oxide: a first-principles study

Yue PENG, Junhua LI

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 403-411 doi: 10.1007/s11783-013-0491-6

摘要: Motivated by the recent realization of graphene sensor to detect gas molecules that are harmful to the environment, the ammonia adsorption on graphene or graphene oxide (GO) was investigated using first-principles calculation. The optimal adsorption and orientation of the NH molecules on the graphene surfaces were determined, and the adsorption energies ( ) as well as the Mulliken charge transfers of NH were calculated. The for the graphene are small and seem to be independent of the sites and orientations. The surface epoxy or hydroxyl groups can promote the adsorption of NH on the GO; the enhancement of the for the hydroxyl groups is greater than that for the epoxy groups on the surface. The charge transfers from the molecule to the surfaces also exhibit the same trend. The Br?nsted acid sites and Lewis acid sites could stably exist on the GO with surface hydroxyl groups and on the basal, respectively.

关键词: graphene oxide     first-principles calculations     NH3 adsorption    

Promotion of transition metal oxides on the NH

Weiman Li, Haidi Liu, Yunfa Chen

《环境科学与工程前沿(英文)》 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0914-x

摘要: Manganese and chromium oxides promote the NH -SCR activity of Zr-Ce mixed oxide. Cr-Zr-Ce mixed oxide exhibited>80% NO conversion at a wide temperature window. More acid sites and higher reducibility may responsible for the high SCR ability. Chromium oxide and manganese oxide promoted ZrO -CeO catalysts were prepared by a homogeneous precipitation method for the selective catalytic reduction of NO with NH . A series of characterization including X-ray diffraction (XRD), high-resolution transmission electron microscope (HR-TEM), Brunauer–Emmett–Teller (BET) surface area analysis, H temperature-programmed reduction (H -TPR), and X-ray photoelectron spectroscopy (XPS) were used to evaluate the influence of the physicochemical properties on NH -SCR activity. Cr-Zr-Ce and Mn-Zr-Ce catalysts are much more active than ZrO -CeO binary oxide for the low temperature NH -SCR, mainly because of the high specific surface area, more surface oxygen species, improved reducibility derived from synergistic effect among different elements. Mn-Zr-Ce catalyst exhibited high tolerance to SO and H O. Cr-Zr-Ce mixed oxide exhibited>80% NO conversion at a wide temperature window of 100°C–300°C. DRIFT studies showed that the addition of Cr is beneficial to the formation of Bronsted acid sites and prevents the formation of stable nitrate species because of the presence of Cr . The present mixed oxide can be a candidate for the low temperature abatement of NO .

关键词: NH3-selective catalytic reduction     NOx     Low temperature     Cr-Zr-Ce    

Li4SiO4-coated LiNi0.5Mn1.5O4 as the high performance

Shifeng YANG, Wenfeng REN, Jian CHEN

《能源前沿(英文)》 2017年 第11卷 第3期   页码 374-382 doi: 10.1007/s11708-017-0494-2

摘要: The preparation of Li SiO -coated LiNi Mn O materials by sintering the SiO -coated nickel-manganese oxides with lithium salts using abundant and low-cost sodium silicate as the silicon source was reported. The samples were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. It was found that a uniform and complete SiO coating layer could be obtained at a suitable pH value of 10, which transformed to a good Li SiO coating layer afterwards. When used as the cathode materials for lithium-ion batteries, the Li SiO -coated LiNi Mn O samples deliver a better electrochemical performance in terms of the discharge capacity, rate capability, and cycling stability than that of the pristine material. It can still deliver 111.1 mAh/g at 20 C after 300 cycles, with a retention ratio of 93.1% of the stable capacity, which is far beyond that of the pristine material (101.3 mAh/g, 85.6%).

关键词: lithium-ion batteries     cathode material     LiNi0.5Mn1.5O4     lithium-ion conductor     coating    

标题 作者 时间 类型 操作

Phase equilibrium of the ternary system of NH 4 Cl—CaCl 2 —H 2 O at 50°C

Xia LI, Junsheng YUAN, Zhiyong JI, Jianxin CHEN,

期刊论文

Denitrification performance and sulfur resistance mechanism of Sm–Mn catalyst for low temperature NH-SCR

期刊论文

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

期刊论文

Effective regeneration of thermally deactivated commercial V-W-Ti catalysts

Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE

期刊论文

CeO doping boosted low-temperature NH-SCR activity of FeTiO catalyst: A microstructure analysis and reaction

期刊论文

Influence of HS and NH on biogas dry reforming using Ni catalyst: a study on single and synergetic effect

期刊论文

NH3OH+/NH2NH3+作为B位阳离子的无金属六方钙钛矿含能材料

尚宇, 余志鸿, 黄瑞康, 陈劭力, 刘德轩, 陈晓娴, 张伟雄, 陈小明

期刊论文

Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption

期刊论文

Electrocatalytic reduction of NO to NH in ionic liquids by P-doped TiO nanotubes

期刊论文

δN-stable isotope analysis of NH: An overview on analytical measurements, source sampling and its source

期刊论文

Low-temperature selective catalytic reduction of NO with NH based on MnO-CeO/ACFN

SHEN Boxiong, LIU Ting, SHI Zhanliang, SHI Jianwei, YANG Tingting, ZHAO Ning

期刊论文

ThMn12型永磁合金

Schönhöbel, A. Martín-Cid, J.M. Barandiaran, D. Niarchos

期刊论文

Ammonia adsorption on graphene and graphene oxide: a first-principles study

Yue PENG, Junhua LI

期刊论文

Promotion of transition metal oxides on the NH

Weiman Li, Haidi Liu, Yunfa Chen

期刊论文

Li4SiO4-coated LiNi0.5Mn1.5O4 as the high performance

Shifeng YANG, Wenfeng REN, Jian CHEN

期刊论文