资源类型

期刊论文 1175

会议视频 15

会议信息 1

年份

2024 39

2023 60

2022 48

2021 64

2020 50

2019 37

2018 45

2017 45

2016 54

2015 60

2014 69

2013 51

2012 45

2011 54

2010 71

2009 63

2008 75

2007 91

2006 32

2005 33

展开 ︾

关键词

细水雾 10

发展战略 8

DX桩 7

数值模拟 7

可持续发展 6

沉降 5

战略研究 4

模型试验 4

能源 3

项目管理 3

COVID-19 2

GIS 2

GM(1 2

Preissmann格式 2

上限法 2

人工湿地 2

冲击波 2

动力响应 2

动力学 2

展开 ︾

检索范围:

排序: 展示方式:

On braced trapezoidal corrugated steel shear panels: An experimental and numerical study

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 396-410 doi: 10.1007/s11709-023-0934-5

摘要: In this study, a new system consisting of a combination of braces and steel infill panels called the braced corrugated steel shear panel (BCSSP) is presented. To obtain the hysteretic behavior of the proposed system, the quasi-static cyclic performances of two experimental specimens were first evaluated. The finite element modeling method was then verified based on the obtained experimental results. Additional numerical evaluations were carried out to investigate the effects of different parameters on the system. Subsequently, a relationship was established to estimate the buckling shear strength of the system without considering residual stresses. The results obtained from the parametric study indicate that the corrugated steel shear panel (CSSP) with the specifications of a = 30 mm, t = 2 mm, and θ = 90° had the highest energy dissipation capacity and ultimate strength while the CSSP with the specifications of a = 30 mm, t = 2 mm, and θ = 30° had the highest initial stiffness. It can thus be concluded that the latter CSSP has the best structural performance and that increasing the number of corrugations, corrugation angle, and plate thickness and decreasing the sub-panel width generally enhance the performance of CSSPs in terms of the stability of their hysteretic behaviors.

关键词: trapezoidal corrugated plate     steel shear panel     braced steel shear panel     experimental study     buckling resistance.    

Experimental study on shear behavior of prestressed reactive powder concrete I-girders

Hui ZHENG, Zhi FANG, Bin CHEN

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 618-627 doi: 10.1007/s11709-018-0500-8

摘要: As a new generation of concrete, RPC(Reactive Powder Concrete) has attracted great research attention for its ultra-high strength and high durability. In the present paper, experimental results from tests on eight prestressed RPC I-section girders failing in shear are reported herein. The beams with RPC of 120 MPa in compression were designed to assess the ability to carry shear stress in thin webbed prestressed beams with stirrups. The test variables were the level of prestressing, shear span-depth ratio ( / ) and stirrup ratio. Shear deformation, shear capacity and crack pattern were experimentally investigated in detail. With regard to the shear resistance of the test beams, the predictions from three standards (AFGC, JSCE and SIA) on the design of UHPC structures were compared with the experimental result suggesting that the experimental strength is almost always higher than predicted. RPC, as a new concrete, was different from normal concrete and fiber reinforced concrete. Further study should be needed to develop an analytical method and computation model for shear strength of RPC beams.

关键词: prestressed concrete     RPC(Reactive Powder Concrete)     concrete beams     shear strength     experimental study    

An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete

Yasser SHARIFI, Ali Akbar MAGHSOUDI

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 46-56 doi: 10.1007/s11709-014-0237-y

摘要: In recent years, an emerging technology termed high-strength concrete (HSC) has become popular in construction industry. Present study describes an experimental research on the behavior of high-strength concrete beams in ultimate and service state. Six simply supported beams were tested, by applying comprising two symmetric concentrated loads. Tests are reported in this study on the flexural behavior of high-strength reinforced concrete (HSRC) beams made with coarse and fine aggregate together with Microsilica. Test parameter considered includes effect of being compressive reinforcement. Based on the obtained results, the behavior of such members is more deeply reviewed. Also a comparison between theoretical and experimental results is reported here. The beams were made from concrete having compressive strength of 66.81–77.72 N/mm and percentage reinforcement ratio ( / ) in the range of 0.56% – 1.20%. The ultimate moment for the tested beams was found to be in a good agreement with that of the predicted ultimate moment based on ACI 318-11, ACI 363 and CSA-04 provisions. The predicted deflection based classical formulation based on code provisions for serviceability requirements is found to underestimate the maximum deflection of HSC reinforced beams at service load.

关键词: high-strength concrete (HSC) members     flexural behavior     reinforced concrete     experimental results     ultimate moment    

Experimental study on the laminar flame speed of hydrogen/natural gas/air mixtures

Chen DONG, Qulan ZHOU, Xiaoguang ZHANG, Qinxin ZHAO, Tongmo XU, Shi’en HUI

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 417-422 doi: 10.1007/s11705-010-0515-8

摘要: Laminar flame speeds of hydrogen/natural gas/air mixtures have been measured over a full range of fuel compositions (0–100% volumetric fraction of H ) and a wide range of equivalence ratio using Bunsen burner. High sensitivity scientific CCD camera is use to capture the image of laminar flame. The reaction zone area is employed to calculate the laminar flame speed. The initial temperature and pressure of fuel air mixtures are 293 K and 1 atm. The laminar flame speeds of hydrogen/air mixture and natural gas/air mixture reach their maximum values 2.933 and 0.374 m/s when equivalence ratios equal to 1.7 and 1.1, respectively. The laminar flame speeds of hydrogen/natural gas/air mixtures rise with the increase of volumetric fraction of hydrogen. Moreover, the increase in laminar flame speed as the volumetric fraction of hydrogen increases presents an exponential increasing trend versus volumetric fraction of hydrogen. Empirical formulas to calculate the laminar flame speeds of hydrogen, natural gas, and hydrogen/natural gas mixtures are also given. Using these formulas, the laminar flame speed at different hydrogen fractions and equivalence ratios can be calculated.

关键词: laminar flame speed     experimental study     Bunsen flame    

An experimental study for optimization of high range water reducing superplasticizer in self compacting

Rahul DUBEY, Pardeep KUMAR

《结构与土木工程前沿(英文)》 2013年 第7卷 第1期   页码 62-71 doi: 10.1007/s11709-013-0192-z

摘要: Concrete is extensively used construction material in the infrastructure development industry. With increase in technical knowhow, the need of research for high performance concretes such as self-compacting concrete (SCC) has increased in the last decade. The adaptability of SCC is due to its fluidic behavior in fresh state. However, to develop SCC using indigenous materials, the lack of standardized mix design procedures is the biggest impediment. Although with the advent of chemical admixtures, it is possible to achieve concrete with high fluidity, but at the same time durability issues require more attention. To have these fresh state properties SCC mixes are typically designed with high powder contents, and chemical admixtures. Proportioning and optimization of these materials is a key issue in the mix design of SCC. This paper focuses mainly on experimental study to optimize dosages of superplasticizer for mortar of SCC and then in concrete mixture itself.

关键词: self-compacting concrete (SCC)     fresh properties     superplasticizer     optimization     compressive strength    

An experimental study on plunging depth of density currents

Hassan GOLEIJ, Amir Hamzeh HAGHIABI, Abbas PARSAIE

《结构与土木工程前沿(英文)》 2017年 第11卷 第4期   页码 388-395 doi: 10.1007/s11709-017-0417-7

摘要: Mass density of the current flows is the one of the important problem in the hydraulics of the dam reservoir. Plunge point occurs when the mass density current penetrates in the stagnant fluid. Recognition the place of this point is very important because of clearing the boundary of the density current flow and ambient fluid. In this study the influences of bed slope and hydraulic parameters on plunging depth were experimentally investigated. The results show that the slope has a minor effect on the plunging depth. The height of plunging depth is increased by increasing the density of the current flow. Also increasing the densimetric Froude number caused of decreasing the plunging depth. Finally an equation was proposed to estimate the plunging depth using as function of flow characteristics.

关键词: dense current     plunge point     Densimetric Froude Number     dam reservoirs    

Experimental study on film combustion formed by spirally fluted horizontal tube

MEI Ning, ZHANG Bin, ZHAO Jian, ZHANG Ming

《能源前沿(英文)》 2008年 第2卷 第1期   页码 54-58 doi: 10.1007/s11708-008-0023-4

摘要: Falling fuel film on the spirally fluted surface of a horizontal tube can provide rapid fuel evaporation and homogeneous mixture formation. This fuel film combustion could be applied in a micro-combustion system even without a fuel pump. A test bed was established and experimental comparisons were made between the prototype and a transferred cup atomizer micro-combustor. The theoretical and experimental results show that film combustion has a higher combustion efficiency, a lower pollutant emission and a better working performance.

关键词: homogeneous     transferred     evaporation     micro-combustion     efficiency    

Combination form analysis and experimental study of mechanical properties on steel sheet glass fiber

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 834-850 doi: 10.1007/s11709-021-0743-7

摘要: The concept of steel sheet glass fiber reinforced polymer (GFRP) composite bar (SSGCB) was put forward. An optimization plan was proposed in the combined form of SSGCB. The composite principle, material selection, and SSGCB preparation technology have been described in detail. Three-dimensional finite element analysis was adopted to perform the combination form optimization of different steel core structures and different steel core contents based on the mechanical properties. Mechanical tests such as uniaxial tensile, shear, and compressive tests were carried out on SSGCB. Parametric analysis was conducted to investigate the influence of steel content on the mechanical properties of SSGCB. The results revealed that the elastic modulus of SSGCB had improvements and increased with the rise of steel content. Shear strength was also increased with the addition of steel content. Furthermore, the yield state of SSGCB was similar to the steel bar, both of which indicated a multi-stage yield phenomenon. The compressive strength of SSGCB was lower than that of GFRP bars and increased with the increase of the steel core content. Stress-strain curves of SSGCB demonstrated that the nonlinear-stage characteristics of SSGCB-8 were much more obvious than other bars.

关键词: steel sheet GFRP composite bar     combination form     numerical modeling     mechanical properties test     strength    

A combined experimental and theoretical study of micronized coal reburning

Hai ZHANG, Jiaxun LIU, Jun SHEN, Xiumin JIANG

《能源前沿(英文)》 2013年 第7卷 第1期   页码 119-126 doi: 10.1007/s11708-012-0226-6

摘要: Micronized coal reburning (MCR) can not only reduce carbon in fly ash but also reduce NO emissions as compared to the conventional coal reburning. However, it has two major kinetic barriers in minimizing NO emission. The first is the conversion of NO into hydrogen cyanide (HCN) by conjunction with various hydrocarbon fragments. The second is the oxidation of HCN by association with oxygen-containing groups. To elucidate the advantages of MCR, a combination of Diffuse Reflection Fourier Transform Infrared (FTIR) experimental studies with Density Functional Theory (DFT) theoretical calculations is conducted in terms of the second kinetic barrier. FTIR studies based on Chinese Tiefa coal show that there are five hydroxide groups such as OH-π, OH-N, OH-OR , self-associated OH and free OH. The hydroxide groups increase as the mean particle size decreases expect for free OH. DFT calculations at the B3LYP/6-31 G(d) level indicate that HCN can be oxidized by hydroxide groups in three paths, HCN+OH→HOCN+H (path 1), HCN+OH→HNCO+H (path 2), and HCN+OH→CN+H O (path 3). The rate limiting steps for path 1, path 2 and path 3 are IM2→P1+H (170.66 kJ/mol activated energy), IM1→IM3 (231.04 kJ/mol activated energy), and R1+OH→P3+H O (97.14 kJ/mol activated energy), respectively. The present study of MCR will provide insight into its lower NO emission and guidance for further studies.

关键词: hydroxyl radicals     Fourier transform infrared spectroscopy (FTIR)     density functional theory (DFT)     homogeneous reaction mechanism     NOx    

An experimental study on ignition of single coal particles at low oxygen concentrations

Wantao YANG, Yang ZHANG, Lilin HU, Junfu LYU, Hai ZHANG

《能源前沿(英文)》 2021年 第15卷 第1期   页码 38-45 doi: 10.1007/s11708-020-0692-1

摘要: An experimental study on the ignition of single coal particles at low oxygen concentrations ( <21%) was conducted using a tube furnace. The surface temperature ( ) and the center temperature ( ) of the coal particles were obtained from the images taken by an infrared camera and thermocouples respectively. The ignition processes were recorded by a high-speed camera at different values and furnace temperatures . Compared with literature experimental data obtained at a high value, the ignition delay time decreases more rapidly as increases at the low region. The responses of and to the variation of are different: decreases while remains nearly constant with increasing at a low value. In addition, is less sensitive to while the ignition temperature is more sensitive to at a low value than in air. Observations of the position of flame front evolution illustrate that the ignition of a coal particle may change from a homogeneous mode to a heterogeneous or combined ignition mode as decreases. At a low value, buoyancy plays a more significant role in sweeping away the released volatiles during the ignition process.

关键词: coal particles     low oxygen concentration     ignition     ignition temperature     ignition modes    

Seismic experimental study on a concrete pylon from a typical medium span cable-stayed bridge

Yan XU, Shijie ZENG, Xinzhi DUAN, Dongbing JI

《结构与土木工程前沿(英文)》 2018年 第12卷 第3期   页码 401-411 doi: 10.1007/s11709-018-0464-8

摘要:

According to the current seismic design codes of bridges in China, cable-stayed bridges have been usually required to remain elastic even subjected to strong earthquakes. However, the possibilities of pylon plastic behavior were revealed in recent earthquake damages. The lack of due diligence in the nonlinear seismic behavior of the pylon has caused a blurry understanding about the seismic performance of such widely built though less strong earthquake experienced structures. In light of this point, a 1/20 scaled concrete pylon model which from a typical medium span cable-stayed bridge was designed and tested on the shaking table longitudinally. The dynamic response and seismic behavior of the pylon were measured, evaluated and compared to reveal its vulnerable parts and nonlinear seismic performance. The results show that most parts of the concrete pylon remain elastic even under very strong excitations, which means a sufficient safety margin for current pylon longitudinal design. The most vulnerable parts of the pylon appeared first at the pylon bottom region, cracks opening and closing at the pylon bottom were observed during the test, and then extended to the lower column and middle column around the lower strut.

关键词: cable-stayed bridge     pylon     shaking table test     seismic behavior    

Experimental study on heat transfer characteristics of supercritical carbon dioxide in horizontal tube

LV Jing, FU Meng, QIN Na, DONG Bin

《能源前沿(英文)》 2008年 第2卷 第3期   页码 339-343 doi: 10.1007/s11708-008-0045-y

摘要: The heat transfer characteristics of supercritical carbon dioxide in a horizontal tube with water in the vertical cross flow form were experimentally investigated. The results indicate that the changes of inlet pressure, mass flow rate, and cooling water flow rate have major effects on heat transfer performance. The variations of Reynolds number and Prandtl number were obtained in counter flow and vertical cross flow. The four conventional correlations for convection heat transfer of supercritical carbon dioxide were verified by the experimental data in this study and the correlation agree with this experimental condition was determined.

关键词: conventional     experimental condition     vertical     Reynolds number     transfer    

An experimental study on spray auto-ignition of RP-3 jet fuel and its surrogates

Yaozong DUAN, Wang LIU, Zhen HUANG, Dong HAN

《能源前沿(英文)》 2021年 第15卷 第2期   页码 396-404 doi: 10.1007/s11708-020-0715-y

摘要: Jet fuel is widely used in air transportation, and sometimes for special vehicles in ground transportation. In the latter case, fuel spray auto-ignition behavior is an important index for engine operation reliability. Surrogate fuel is usually used for fundamental combustion study due to the complex composition of practical fuels. As for jet fuels, two-component or three-component surrogate is usually selected to emulate practical fuels. The spray auto-ignition characteristics of RP-3 jet fuel and its three surrogates, the 70% mol -decane/30% mol 1,2,4-trimethylbenzene blend (Surrogate 1), the 51% mol -decane/49% mol 1, 2, 4-trimethylbenzene blend (Surrogate 2), and the 49.8% mol -dodecane/21.6% mol -cetane/28.6% mol toluene blend (Surrogate 3) were studied in a heated constant volume combustion chamber. Surrogate 1 and Surrogate 2 possess the same components, but their blending percentages are different, as the two surrogates were designed to capture the H/C ratio (Surrogate 1) and DCN (Surrogate 2) of RP-3 jet fuel, respectively. Surrogate 3 could emulate more physiochemical properties of RP-3 jet fuel, including molecular weight, H/C ratio and DCN. Experimental results indicate that Surrogate 1 overestimates the auto-ignition propensity of RP-3 jet fuel, whereas Surrogates 2 and 3 show quite similar auto-ignition propensity with RP-3 jet fuel. Therefore, to capture the spray auto-ignition behaviors, DCN is the most important parameter to match when designing the surrogate formulation. However, as the ambient temperature changes, the surrogates matching DCN may still show some differences from the RP-3 jet fuel, e.g., the first-stage heat release influenced by low-temperature chemistry.

关键词: RP-3 jet fuel     surrogate     spray auto-ignition     constant volume combustion chamber    

Experimental study of the restoring force mechanism in the self-centering beam (SCB)

Abhilasha MAURYA,Matthew R. EATHERTON

《结构与土木工程前沿(英文)》 2016年 第10卷 第3期   页码 272-282 doi: 10.1007/s11709-016-0346-x

摘要: In the past, several self-centering (SC) seismic systems have been developed. However, examples of self-centering systems used in practice are limited due to unusual field construction practices, high initial cost premiums and deformation incompatibility with the gravity framing. A self centering beam moment frame (SCB-MF) has been developed that mitigates several of these issues while adding to the advantages of a typical SC system. The self-centering beam (SCB) is a shop-fabricated, self-contained structural component that when implemented in a moment resisting frame can bring a building back to plumb after an earthquake. This paper describes the SCB concepts and experimental program on five SCB specimens at two-third scale relative to a prototype building. Experimental results are presented including the global force-deformation behavior. The SCBs are shown to undergo 5%–6% story drift without any observable damage to the SCB body and columns. Strength equations developed for the SCB predict the moment capacity well, with a mean difference of 6% between experimental and predicted capacities. The behavior of the restoring force mechanism is described. The limit states that cause a loss in system's restoring force which lead to a decrease in the self-centering capacity of the SCB-MF, are presented.

关键词: self-centering seismic system     seismic design     hysteretic behavior     restoring force     resilient structural system    

Hysteretic behavior of cambered surface steel tube damper: Theoretical and experimental research

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 606-624 doi: 10.1007/s11709-023-0925-6

摘要: A novel cambered surface steel tube damper (CSTD) with a cambered surface steel tube and two concave connecting plates is proposed herein. The steel tube is the main energy dissipation component and comprises a weakened segment in the middle, a transition segment, and an embedded segment. It is believed that during an earthquake, the middle weakened segment of the CSTD will be damaged, whereas the reliability of the end connection is ensured. Theoretical and experimental studies are conducted to verify the effectiveness of the proposed CSTD. Formulas for the initial stiffness and yield force of the CSTD are proposed. Subsequently, two CSTD specimens with different steel tube thicknesses are fabricated and tested under cyclic quasi-static loads. The result shows that the CSTD yields a stable hysteretic response and affords excellent energy dissipation. A parametric study is conducted to investigate the effects of the steel tube height, diameter, and thickness on the seismic performance of the CSTD. Compared with equal-stiffness design steel tube dampers, the CSTD exhibits better energy dissipation performance, more stable hysteretic response, and better uniformity in plastic deformation distributions.

关键词: cambered surface steel tube damper     energy dissipation capacity     finite element model     hysteretic performance     parametric study    

标题 作者 时间 类型 操作

On braced trapezoidal corrugated steel shear panels: An experimental and numerical study

期刊论文

Experimental study on shear behavior of prestressed reactive powder concrete I-girders

Hui ZHENG, Zhi FANG, Bin CHEN

期刊论文

An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete

Yasser SHARIFI, Ali Akbar MAGHSOUDI

期刊论文

Experimental study on the laminar flame speed of hydrogen/natural gas/air mixtures

Chen DONG, Qulan ZHOU, Xiaoguang ZHANG, Qinxin ZHAO, Tongmo XU, Shi’en HUI

期刊论文

An experimental study for optimization of high range water reducing superplasticizer in self compacting

Rahul DUBEY, Pardeep KUMAR

期刊论文

An experimental study on plunging depth of density currents

Hassan GOLEIJ, Amir Hamzeh HAGHIABI, Abbas PARSAIE

期刊论文

Experimental study on film combustion formed by spirally fluted horizontal tube

MEI Ning, ZHANG Bin, ZHAO Jian, ZHANG Ming

期刊论文

Combination form analysis and experimental study of mechanical properties on steel sheet glass fiber

期刊论文

A combined experimental and theoretical study of micronized coal reburning

Hai ZHANG, Jiaxun LIU, Jun SHEN, Xiumin JIANG

期刊论文

An experimental study on ignition of single coal particles at low oxygen concentrations

Wantao YANG, Yang ZHANG, Lilin HU, Junfu LYU, Hai ZHANG

期刊论文

Seismic experimental study on a concrete pylon from a typical medium span cable-stayed bridge

Yan XU, Shijie ZENG, Xinzhi DUAN, Dongbing JI

期刊论文

Experimental study on heat transfer characteristics of supercritical carbon dioxide in horizontal tube

LV Jing, FU Meng, QIN Na, DONG Bin

期刊论文

An experimental study on spray auto-ignition of RP-3 jet fuel and its surrogates

Yaozong DUAN, Wang LIU, Zhen HUANG, Dong HAN

期刊论文

Experimental study of the restoring force mechanism in the self-centering beam (SCB)

Abhilasha MAURYA,Matthew R. EATHERTON

期刊论文

Hysteretic behavior of cambered surface steel tube damper: Theoretical and experimental research

期刊论文