资源类型

期刊论文 5

年份

2024 1

2022 1

2020 1

2010 1

2009 1

关键词

固体推进剂 2

单质炸药 1

含能材料 1

无金属六方钙钛矿 1

激光 1

燃烧诊断 1

超声速流场 1

展开 ︾

检索范围:

排序: 展示方式:

Micro-nanoarchitectonic of aluminum-hydrogel propellant with static stability and dynamic rheology

《化学科学与工程前沿(英文)》 2024年 第18卷 第4期 doi: 10.1007/s11705-024-2404-6

摘要: The aluminum-water system is a promising propellant due to high energy and low signal characteristics, and the gel form is easier to store and utilize. In this work, hydrogels of water and aluminum particles were prepared using the low-molecular-weight gellant agarose. The various physical properties of gel systems, including the water loss rate, phase transition temperature, and centrifugal stability at different gellant and aluminum contents, were examined. Rheological properties were assessed through shear thinning tests, thixotropy tests, strain sweep analysis, and frequency sweep experiments. The microstructure of the gel was obtained through scanning electron microscopy images. The results show that the aluminum-hydrogel network structure is composed of micron-scale aluminum and agarose nanosheets, and the unique micro-nanostructure endows the gel with excellent mechanical strength and thermal stability, which improve with increasing gellant and aluminum contents. Notably, the gel with 2% agarose and 20% aluminum had the best performance; the storage modulus reached 90647 Pa, which was within the linear viscoelastic region, and the maximum withstand pressure was 111.2 kPa, which was 118.8% greater than that of the pure hydrogel. Additionally, the gel demonstrates remarkable shear thinning behavior and can undergo gel-sol transformation upon shearing or heating to exceeding 114 °C.

关键词: aluminum-water propellant     gelled propellant     rheological property     mechanical strength    

Review on design, preparation and performance characterization of gelled fuels for advanced propulsion

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 819-837 doi: 10.1007/s11705-021-2122-2

摘要: With the increasing demand for high-performance and safe fuels in aerospace propulsion systems, gelled fuels have attracted increasing attention. Because of their unique structure, gelled fuels exhibit the advantages of both solid and liquid fuels, such as high energy density, controllable thrust and storage safety. This review provides an overview on design, preparation and performance characterization of gelled fuels. The composition, preparation process and gelation mechanism of gelled high-energy-density fuels are described. Considering these aspects, the rheology and flow behavior of gelled fuels is summarized in terms of the shear thinning property, dynamic viscoelasticity and thixotropy. Moreover, the progress of atomization of gelled fuels is reviewed with a focus on the effect of atomizing nozzles. In addition, the experiments and theoretical models of single droplet combustion and combustor combustion are described. Finally, research directions for the development and application of gelled fuels are suggested.

关键词: gelled fuels     high-energy-density fuels     rheological properties     atomization     combustion    

Study on electrical ignition and micro-explosion properties of HAN-based monopropellant droplet

Yonggang YU, Ming LI, Yanhuang ZHOU, Xin LU, Yuzhu PAN,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 430-435 doi: 10.1007/s11708-010-0010-4

摘要: In order to study the electrical ignition characteristics of hydroxylammonium nitrate (HAN)-based liquid propellant, an experimental device for the electrical heating ignition of a liquid propellant droplet was designed. By using a high speed camera system, the ignition properties of the LP1846 single droplet were observed at different electrical heating speeds. The results show that when the LP1846 droplet is electrified, it mainly goes through an evaporization process, a periodic expansion and contraction process, a stronger thermal decomposition process, and an ignition and combustion process. The periodic expansion and contraction process accompanies the droplet micro-explosion phenomenon, and the micro-explosion mechanism is formed mainly due to the overheated water component in LP1846. When peak load voltage is from 80 to 140V/s, the ignition delay of the LP1846 droplet is linearly shortened from 0.82 to 0.62s, but the flame is lighter. Based on the above experiments, a simplified model of the electrical heating ignition of the LP1846 single droplet is established.

关键词: liquid propellant     electrical ignition     ignition delay time     transient measurement    

激光燃烧诊断技术及应用研究进展

胡志云,刘晶儒,张振荣,叶景峰,关小伟,张立荣,王晟,黄梅生,赵新艳,叶锡生

《中国工程科学》 2009年 第11卷 第11期   页码 45-50

摘要:

介绍了用于燃烧场温度、组分、火焰构造和流场速度等参数测量的相干反斯托克斯喇曼散射、自发振动喇曼散射、激光诱导荧光和OH示踪测速实验系统,给出了在预混火焰、高能固体推进剂瞬态燃烧场和超声速高温流场测量的部分实验结果,并分析了激光作用区域燃烧场温度、主要组分及流场速度的分布和火焰构造。

关键词: 激光     燃烧诊断     固体推进剂     超声速流场    

以NH3OH+/NH2NH3+作为B位阳离子的无金属六方钙钛矿含能材料 Article

尚宇, 余志鸿, 黄瑞康, 陈劭力, 刘德轩, 陈晓娴, 张伟雄, 陈小明

《工程(英文)》 2020年 第6卷 第9期   页码 1013-1018 doi: 10.1016/j.eng.2020.05.018

摘要:

寻找可经由简单路线合成的高性能含能材料是发展先进实用含能材料的重要问题。文中通过合理地选择分子组分,经由易于规模放大的简单合成路线,以NH3OH+和NH2NH3+分别作为B位点阳离子构筑了两例无金属六方钙钛矿含能材料(H2dabco)B(ClO4)3(分别命名为DAP-6和DAP-7,其中H2dabco2+是1,4-二氮杂双环[2.2.2]辛烷-1,4-二鎓离子)。与基于NH4+阳离子构筑的立方钙钛矿类似物(H2dabco)(NH4)(ClO4)3相比,DAP-6和DAP-7有较高的晶体堆积密度和生成焓,从而具有更高的爆轰性能。特别地,DAP-7具有超高热稳定性(起始分解温度Td = 375.3 °C)、高爆速(D = 8.883 km·s‒1)和高爆压(P = 35.8 GPa),因此具有作为耐热炸药的应用潜力。计算表明,DAP-6不仅具有较高的热稳定性(Td = 245.9 °C)以及优异的爆轰性能(D = 9.123 km·s‒1P = 38.1 GPa),而且其爆热值(Q = 6.35 kJ·g‒1)和理论比冲值(Isp = 265.3 s)均稍优于六硝基六氮杂异伍兹烷(CL-20:Q = 6.23 kJ·g‒1Isp = 264.8 s),在炸药和推进剂领域中具有很好的应用前景。

关键词: 含能材料     单质炸药     固体推进剂     无金属六方钙钛矿    

标题 作者 时间 类型 操作

Micro-nanoarchitectonic of aluminum-hydrogel propellant with static stability and dynamic rheology

期刊论文

Review on design, preparation and performance characterization of gelled fuels for advanced propulsion

期刊论文

Study on electrical ignition and micro-explosion properties of HAN-based monopropellant droplet

Yonggang YU, Ming LI, Yanhuang ZHOU, Xin LU, Yuzhu PAN,

期刊论文

激光燃烧诊断技术及应用研究进展

胡志云,刘晶儒,张振荣,叶景峰,关小伟,张立荣,王晟,黄梅生,赵新艳,叶锡生

期刊论文

以NH3OH+/NH2NH3+作为B位阳离子的无金属六方钙钛矿含能材料

尚宇, 余志鸿, 黄瑞康, 陈劭力, 刘德轩, 陈晓娴, 张伟雄, 陈小明

期刊论文