检索范围:
排序: 展示方式:
Spatial prediction of soil contamination based on machine learning: a review
《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1693-1
● A review of machine learning (ML) for spatial prediction of soil contamination.
关键词: Soil contamination Machine learning Prediction Spatial distribution
Advancing agriculture with machine learning: a new frontier in weed management
《农业科学与工程前沿(英文)》 doi: 10.15302/J-FASE-2024564
● Machine learning offers innovative and sustainable weed management approaches.
关键词: Weed management herbicides machine learning agricultural practices environmental impact
Elucidate long-term changes of ozone in Shanghai based on an integrated machine learning method
《环境科学与工程前沿(英文)》 2023年 第17卷 第11期 doi: 10.1007/s11783-023-1738-5
● A novel integrated machine learning method to analyze O3 changes is proposed.
Evaluation and prediction of slope stability using machine learning approaches
《结构与土木工程前沿(英文)》 2021年 第15卷 第4期 页码 821-833 doi: 10.1007/s11709-021-0742-8
关键词: slope stability factor of safety regression machine learning repeated cross-validation
《化学科学与工程前沿(英文)》 2022年 第16卷 第2期 页码 183-197 doi: 10.1007/s11705-021-2073-7
关键词: machine learning flowsheet simulations constraints exploration
Predicting torsional capacity of reinforced concrete members by data-driven machine learning models
《结构与土木工程前沿(英文)》 2024年 第18卷 第3期 页码 444-460 doi: 10.1007/s11709-024-1050-x
关键词: RC members torsional capacity machine learning models design codes
Improving lipid production by for renewable fuel production based on machine learning
《化学科学与工程前沿(英文)》 2024年 第18卷 第5期 doi: 10.1007/s11705-024-2410-8
关键词: microbial lipid machine learning artificial neural network support vector machine genetic algorithm
Big data and machine learning: A roadmap towards smart plants
《工程管理前沿(英文)》 2022年 第9卷 第4期 页码 623-639 doi: 10.1007/s42524-022-0218-0
关键词: big data machine learning artificial intelligence smart sensor cyber–physical system Industry 4.0 intelligent system digitalization
State-of-the-art applications of machine learning in the life cycle of solid waste management
《环境科学与工程前沿(英文)》 2023年 第17卷 第4期 doi: 10.1007/s11783-023-1644-x
● State-of-the-art applications of machine learning (ML) in solid waste (SW) is presented.
关键词: Machine learning (ML) Solid waste (SW) Bibliometrics SW management Energy utilization Life cycle
《结构与土木工程前沿(英文)》 2024年 第18卷 第2期 页码 294-308 doi: 10.1007/s11709-024-1045-7
关键词: steel weld machine learning convolutional neural network weld defect detection classification task percussion
《环境科学与工程前沿(英文)》 2024年 第18卷 第2期 doi: 10.1007/s11783-024-1777-6
● A machine learning approach was applied to predict free chlorine residuals.
关键词: Machine learning Data-driven modeling Drinking water treatment Disinfection Chlorination
Development of machine learning multi-city model for municipal solid waste generation prediction
《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1551-6
● A database of municipal solid waste (MSW) generation in China was established.
关键词: Municipal solid waste Machine learning Multi-cities Gradient boost regression tree
Machine learning in building energy management: A critical review and future directions
《工程管理前沿(英文)》 2022年 第9卷 第2期 页码 239-256 doi: 10.1007/s42524-021-0181-1
关键词: building energy management machine learning integrated framework knowledge evolution
Machine learning modeling identifies hypertrophic cardiomyopathy subtypes with genetic signature
《医学前沿(英文)》 2023年 第17卷 第4期 页码 768-780 doi: 10.1007/s11684-023-0982-1
关键词: machine learning methods hypertrophic cardiomyopathy genetic risk
《环境科学与工程前沿(英文)》 2023年 第17卷 第12期 doi: 10.1007/s11783-023-1752-7
● Online learning models accurately predict influent flow rate at wastewater plants.
关键词: Wastewater prediction Data stream Online learning Batch learning Influent flow rates
标题 作者 时间 类型 操作
Elucidate long-term changes of ozone in Shanghai based on an integrated machine learning method
期刊论文
Using machine learning models to explore the solution space of large nonlinear systems underlying flowsheet
期刊论文
Predicting torsional capacity of reinforced concrete members by data-driven machine learning models
期刊论文
Automated identification of steel weld defects, a convolutional neural network improved machine learning
期刊论文
Development of gradient boosting-assisted machine learning data-driven model for free chlorine residual
期刊论文
Development of machine learning multi-city model for municipal solid waste generation prediction
期刊论文
Machine learning modeling identifies hypertrophic cardiomyopathy subtypes with genetic signature
期刊论文