资源类型

期刊论文 419

会议视频 4

年份

2024 26

2023 39

2022 43

2021 43

2020 29

2019 27

2018 13

2017 15

2016 10

2015 11

2014 23

2013 14

2012 11

2011 13

2010 16

2009 11

2008 19

2007 26

2006 11

2005 7

展开 ︾

关键词

力学性能 12

强度 3

力学模型 2

变形 2

微机电系统 2

数值模拟 2

斜拉桥 2

机械结构 2

析出强化 2

现场监测 2

高强度 2

1860 MPa等级 1

2021全球工程前沿 1

4250 m 1

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

ANSYS 1

Brønsted 酸催化 1

展开 ︾

检索范围:

排序: 展示方式:

Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected

Antonio MARÍ,Antoni CLADERA,Jesús BAIRÁN,Eva OLLER,Carlos RIBAS

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 337-353 doi: 10.1007/s11709-014-0081-0

摘要: A mechanical model recently developed for the shear strength of slender reinforced concrete beams with and without shear reinforcement is presented and extended to elements with uniformly distributed loads, specially focusing on practical design and assessment in this paper. The shear strength is considered to be the sum of the shear transferred by the concrete compression chord, along the crack, due to residual tensile and frictional stresses, by the stirrups and, if they exist, by the longitudinal reinforcement. Based on the principles of structural mechanics simple expressions have been derived separately for each shear transfer action and for their interaction at ultimate limit state. The predictions of the model have been compared to those obtained by using the EC2, MC2010 and ACI 318-08 provisions and they fit very well the available experimental results from the recently published ACI-DAfStb databases of shear tests on slender reinforced concrete beams with and without stirrups. Finally, a detailed application example has been presented, obtaining each contributing component to the shear strength and the assumed shape and position of the critical crack.

关键词: shear strength     mechanical model     reinforced concrete     design     assessment     shear tests    

Rosin side chain type catalyst-free vitrimers with high cross-link density, mechanical strength, and

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1267-1279 doi: 10.1007/s11705-022-2291-7

摘要: The emergence of vitrimer, a new class of polymer materials can address the problem of recyclability, reprocess ability and recyclability of thermosetting plastics. Rosin, a natural product, is an ideal raw material for the preparation of polymers in a more sustainable way. Nevertheless, due to the huge steric hindrance caused by the hydrogenated phenanthrene ring structure, the cross-link density of materials is frequently lowered. In this study, hydrogenated rosin was adopted for preparing hydrogenated rosin side-chain type diacids, which were reacted with mixed epoxy to obtain rosin side-chain type vitrimers. It was completely characterized by differential scanning calorimetry test, thermogravimetric analysis, shape memory test and self-healing test. The prepared vitrimers exhibited good self-healing properties, excellent heat resistance (Td = 352 °C) as well as high mechanical properties (tensile strength of 46.75 MPa). The tricyclic diterpene structure of rosin was introduced into the side chain in order to avoid the reduction of cross-link density resulting from the huge steric hindrance of the rigid tricyclic hydrophenylene skeleton. Vitrimers can undergo dynamic transesterification reaction without external catalysts due to the autocatalytic effect of tertiary amines from epoxy. Moreover, our work expanded the application field of rosin, increased the added value of rosin, and provided a novel method for preparing rosin-based vitrimers with ideal properties.

关键词: vitrimers     rosin     catalyst-free     high mechanical properties     dynamic transesterification reaction    

Experimental investigation on mechanical properties of binary and ternary blended pervious concrete

Rekha SINGH, Sanjay GOEL

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 229-240 doi: 10.1007/s11709-019-0597-4

摘要: The purpose of the investigation was to study the effect of binary and ternary blends of cement on the mechanical properties of pervious concrete (PC) specimen through destructive (DT) and non-destructive testing (NDT). Various combinations of fly ash (FA), limestone powder (LP), metakaolin (MK), and silica fume (SF) as mineral admixtures have been investigated to partially replace the cement up to 30% by weight in PC. Standard cube specimens of size 150 mm × 150 mm × 150 mm of binary and ternary blends of mineral admixture of pervious concrete were prepared to conduct standard compressive strength test and split tensile test at 7 and 28 days of curing. The ultrasonic pulse velocity (UPV) test and Rebound Hammer test were used as a non-destructive testing tool to substantiate the robustness of PC and to determine the approximate mechanical properties where other destructive testing tools are not feasible in case of in-place pervious pavements. Overall the pervious concrete made with LP based ternary blends (PLM and PLS) were found to perform better than FA based ternary blends (PFM and PFS) and control mix (PC) in destructive and non-destructive testing.

关键词: mineral admixture     ternary     compressive strength     split tensile strength     pervious concrete     ultrasonic pulse velocity    

Mechanical properties characterization of different types of masonry infill walls

André FURTADO, Hugo RODRIGUES, António ARÊDE, Humberto VARUM

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 411-434 doi: 10.1007/s11709-019-0602-y

摘要: It is remarkable, the recent advances concerning the development of numerical modeling frameworks to simulate the infill panels’ seismic behavior. However, there is a lack of experimental data of their mechanical properties, which are of full importance to calibrate the numerical models. The primary objective of this paper is to present an extensive experimental campaign of mechanical characterization tests of infill masonry walls made with three different types of masonry units: lightweight vertical hollow concrete blocks and hollow clay bricks. Four different types of experimental tests were carried out, namely: compression strength tests, diagonal tensile strength tests, and flexural strength tests parallel and perpendicular to the horizontal bed joints. A total amount of 80 tests were carried out and are reported in the present paper. The second objective of this study was to compare the mechanical properties of as-built and existing infill walls. The results presented and discussed herein, will be in terms of strain-stress curves and damages observed within the tests. It was observed a fragile behavior in the panels made with hollow clay horizontal bricks, without propagation of cracks. The plaster increased the flexural strength by 57%.

关键词: masonry infill walls     experimental characterization     compression strength     shear diagonal strength     flexural strength    

Experimental study on mechanical properties of a novel micro-steel fiber reinforced magnesium phosphate

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1047-1057 doi: 10.1007/s11709-021-0755-3

摘要: Magnesium phosphate cement (MPC) received increased attention in recent years, but MPC-based concrete is rarely reported. The micro-steel fibers (MSF) were added to MPC-based concrete to enhance its ductility due to the high brittleness in tensile and flexural strength properties of MPC. This paper investigates the effect of MSF volume fraction on the mechanical properties of a new pattern of MPC-based concrete. The temperature development curve, fluidity, cubic compressive strength, modulus of elastic, axial compressive strength, and four-point flexural strength were experimentally studied with 192 specimens, and a scanning electron microscopy (SEM) test was carried out after the specimens were failed. Based on the test results, the correlations between the cubic compressive strength and curing age, the axial and cubic compressive strength of MPC-based concrete were proposed. The results showed that with the increase of MSF volume fraction, the fluidity of fresh MPC-based concrete decreased gradually. MSF had no apparent influence on the compressive strength, while it enhanced the four-point flexural strength of MPC-based concrete. The four-point flexural strength of specimens with MSF volume fraction from 0.25% to 0.75% were 12.3%, 21.1%, 24.6% higher than that of the specimens without MSF, respectively.

关键词: magnesium phosphate cement-based concrete     micro-steel fibers     four-point flexural strength     compressive strength    

Combination form analysis and experimental study of mechanical properties on steel sheet glass fiber

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 834-850 doi: 10.1007/s11709-021-0743-7

摘要: The concept of steel sheet glass fiber reinforced polymer (GFRP) composite bar (SSGCB) was put forward. An optimization plan was proposed in the combined form of SSGCB. The composite principle, material selection, and SSGCB preparation technology have been described in detail. Three-dimensional finite element analysis was adopted to perform the combination form optimization of different steel core structures and different steel core contents based on the mechanical properties. Mechanical tests such as uniaxial tensile, shear, and compressive tests were carried out on SSGCB. Parametric analysis was conducted to investigate the influence of steel content on the mechanical properties of SSGCB. The results revealed that the elastic modulus of SSGCB had improvements and increased with the rise of steel content. Shear strength was also increased with the addition of steel content. Furthermore, the yield state of SSGCB was similar to the steel bar, both of which indicated a multi-stage yield phenomenon. The compressive strength of SSGCB was lower than that of GFRP bars and increased with the increase of the steel core content. Stress-strain curves of SSGCB demonstrated that the nonlinear-stage characteristics of SSGCB-8 were much more obvious than other bars.

关键词: steel sheet GFRP composite bar     combination form     numerical modeling     mechanical properties test     strength    

Micro-nanoarchitectonic of aluminum-hydrogel propellant with static stability and dynamic rheology

《化学科学与工程前沿(英文)》 2024年 第18卷 第4期 doi: 10.1007/s11705-024-2404-6

摘要: The aluminum-water system is a promising propellant due to high energy and low signal characteristics, and the gel form is easier to store and utilize. In this work, hydrogels of water and aluminum particles were prepared using the low-molecular-weight gellant agarose. The various physical properties of gel systems, including the water loss rate, phase transition temperature, and centrifugal stability at different gellant and aluminum contents, were examined. Rheological properties were assessed through shear thinning tests, thixotropy tests, strain sweep analysis, and frequency sweep experiments. The microstructure of the gel was obtained through scanning electron microscopy images. The results show that the aluminum-hydrogel network structure is composed of micron-scale aluminum and agarose nanosheets, and the unique micro-nanostructure endows the gel with excellent mechanical strength and thermal stability, which improve with increasing gellant and aluminum contents. Notably, the gel with 2% agarose and 20% aluminum had the best performance; the storage modulus reached 90647 Pa, which was within the linear viscoelastic region, and the maximum withstand pressure was 111.2 kPa, which was 118.8% greater than that of the pure hydrogel. Additionally, the gel demonstrates remarkable shear thinning behavior and can undergo gel-sol transformation upon shearing or heating to exceeding 114 °C.

关键词: aluminum-water propellant     gelled propellant     rheological property     mechanical strength    

Mechanical properties of stabilized artificial organic soil

XU Riqing, GUO Yin, LIU Zengyong

《结构与土木工程前沿(英文)》 2008年 第2卷 第2期   页码 161-165 doi: 10.1007/s11709-008-0023-9

摘要: In order to study the influence of organic matter on the mechanical properties of stabilized soil and the effect of XGL2005 on stabilizing organic soil, unconfined compressive strength tests were carried out. Test results indicated that the strength of stabilized soil decreased in the form of a logarithmic function as the organic matter content increased. In contrast, the strength increased in the form of a power function as the content of the stabilization agent increased. The strength of cement stabilized organic soil was reinforced greatly by adding the stabilizer XGL2005. Based on the law obtained from the test, a strength prediction model was established by regression analysis. The model included the influence of the curing time, the content of the cement, the organic matter content and the stabilization agent on the strength of stabilized soil.

关键词: compressive strength     stabilized     stabilization     regression analysis     stabilizer XGL2005    

高强钢筋混凝土预制弧板井壁力学特性分析

荣传新,王秀喜,程桦

《中国工程科学》 2005年 第7卷 第7期   页码 43-49

摘要:

对高强钢筋混凝土预制弧板井壁结构的研究表明,实验结果与数值计算结果基本一致。高强钢筋混凝土预制弧板井壁结构具有很高的承载能力,影响其承载能力的主要因素依次为混凝土的强度等级、厚径比和配筋率。在均布荷载作用下,混凝土的强度等级提高10MPa,极限承载力提高1.26MPa。厚径比每增加1%,极限承载力增加0.85 MPa。增大配筋率对提高其极限承载力作用不大,配筋率增大3倍,极限承载力只增加了0.1MPa。

关键词: 高强钢筋混凝土预制弧板井壁     力学特性     有限元法     ANSYS    

Influence of the field humiture environment on the mechanical properties of 316L stainless steel repaired

Lianzhong ZHANG, Dichen LI, Shenping YAN, Ruidong XIE, Hongliang QU

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 513-519 doi: 10.1007/s11465-018-0503-0

摘要:

The mechanical properties of 316L stainless steel repaired with Fe314 under different temperatures and humidities without inert gas protection were studied. Results indicated favorable compatibility between Fe314 and 316L stainless steel. The average yield strength, tensile strength, and sectional contraction percentage were higher in repaired samples than in 316L stainless steel, whereas the elongation rate was slightly lower. The different conditions of humiture environment on the repair sample exerted minimal influence on tensile and yield strengths. The Fe314 cladding layer was mainly composed of equiaxed grains and mixed with randomly oriented columnar crystal and tiny pores or impurities in the tissue. Results indicated that the hardness value of Fe314 cladding layer under different humiture environments ranged within 419–451.1 HV0.2. The field humiture environment also showed minimal impact on the average hardness of Fe314 cladding layers. Furthermore, 316L stainless steel can be repaired through laser cladding by using Fe314 powder without inert gas protection under different temperatures and humidity environments.

关键词: laser cladding     repaired performance     tensile strength     temperature and humidity environment    

Deep learning model for estimating the mechanical properties of concrete containing silica fume exposed

Harun TANYILDIZI, Abdulkadir ŞENGÜR, Yaman AKBULUT, Murat ŞAHİN

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1316-1330 doi: 10.1007/s11709-020-0646-z

摘要: In this study, the deep learning models for estimating the mechanical properties of concrete containing silica fume subjected to high temperatures were devised. Silica fume was used at concentrations of 0%, 5%, 10%, and 20%. Cube specimens (100 mm × 100 mm × 100 mm) were prepared for testing the compressive strength and ultrasonic pulse velocity. They were cured at 20°C±2°C in a standard cure for 7, 28, and 90 d. After curing, they were subjected to temperatures of 20°C, 200°C, 400°C, 600°C, and 800°C. Two well-known deep learning approaches, i.e., stacked autoencoders and long short-term memory (LSTM) networks, were used for forecasting the compressive strength and ultrasonic pulse velocity of concrete containing silica fume subjected to high temperatures. The forecasting experiments were carried out using MATLAB deep learning and neural network tools, respectively. Various statistical measures were used to validate the prediction performances of both the approaches. This study found that the LSTM network achieved better results than the stacked autoencoders. In addition, this study found that deep learning, which has a very good prediction ability with little experimental data, was a convenient method for civil engineering.

关键词: concrete     high temperature     strength properties     deep learning     stacked auto-encoders     LSTM network    

A bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-023-0747-1

摘要: Capacitive sensors are efficient tools for biophysical force measurement, which is essential for the exploration of cellular behavior. However, attention has been rarely given on the influences of external mechanical and internal electrical interferences on capacitive sensors. In this work, a bionic swallow structure design norm was developed for mechanical decoupling, and the influences of structural parameters on mechanical behavior were fully analyzed and optimized. A bionic feather comb distribution strategy and a portable readout circuit were proposed for eliminating electrostatic interferences. Electrostatic instability was evaluated, and electrostatic decoupling performance was verified on the basis of a novel measurement method utilizing four complementary comb arrays and application-specific integrated circuit readouts. An electrostatic pulling experiment showed that the bionic swallow structure hardly moved by 0.770 nm, and the measurement error was less than 0.009% for the area-variant sensor and 1.118% for the gap-variant sensor, which can be easily compensated in readouts. The proposed sensor also exhibited high resistance against electrostatic rotation, and the resulting measurement error dropped below 0.751%. The rotation interferences were less than 0.330 nm and (1.829 × 10−7)°, which were 35 times smaller than those of the traditional differential one. Based on the proposed bionic decoupling method, the fabricated sensor exhibited overwhelming capacitive sensitivity values of 7.078 and 1.473 pF/µm for gap-variant and area-variant devices, respectively, which were the highest among the current devices. High immunity to mechanical disturbances was maintained simultaneously, i.e., less than 0.369% and 0.058% of the sensor outputs for the gap-variant and area-variant devices, respectively, indicating its great performance improvements over existing devices and feasibility in ultralow biomedical force measurement.

关键词: micro-electro-mechanical system capacitive sensor     bionics     operation instability     mechanical and electrical decoupling     biomedical force measurement    

Evaluating the material strength from fracture angle under uniaxial loading

Jitang FAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 288-293 doi: 10.1007/s11709-018-0480-8

摘要: The most common experimental methods of measuring material strength are the uniaxial compressive and tensile tests. Generally, shearing fracture model occurs in both the tests. Compressive strength is higher than tensile strength for a material. Shearing fracture angle is smaller than 45° under uniaxial compression and greater than 45° under uniaxial tension. In this work, a unified relation of material strength under uniaxial compression and tension is developed by correlating the shearing fracture angle in theory. This constitutive relation is quantitatively illustrated by a function for analyzing the material strength from shear fracture angle. A computational simulation is conducted to validate this theoretical function. It is full of interest to give a scientific illustration for designing the high-strength materials and engineering structures.

关键词: strength     fracture     mechanics    

Determination of mechanical parameters for elements in meso-mechanical models of concrete

Xianglin GU, Junyu JIA, Zhuolin WANG, Li HONG, Feng LIN

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 391-401 doi: 10.1007/s11709-013-0225-7

摘要: The responses of cement mortar specimens of different dimensions under compression and tension were calculated based on the discrete element method with the modified-rigid-body-spring concrete model, in which the mechanical parameters derived from macro-scale material tests were applied directly to the mortar elements. By comparing the calculated results with those predicted by the Carpinteri and Weibull size effects laws, a series of formulas to convert the macro-scale mechanical parameters of mortar and interface to those at the meso-scale were proposed through a fitting analysis. Based on the proposed formulas, numerical simulation of axial compressive and tensile failure processes of concrete and cement mortar materials, respectively were conducted. The calculated results were a good match with the test results.

关键词: concrete     meso-mechanical model     discrete element method     size effect     mechanical parameter    

Machine learning based models for predicting compressive strength of geopolymer concrete

《结构与土木工程前沿(英文)》 2024年 第18卷 第7期   页码 1028-1049 doi: 10.1007/s11709-024-1039-5

摘要: Machine learning based models for predicting compressive strength of geopolymer concrete

关键词: strength geopolymer concrete    

标题 作者 时间 类型 操作

Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected

Antonio MARÍ,Antoni CLADERA,Jesús BAIRÁN,Eva OLLER,Carlos RIBAS

期刊论文

Rosin side chain type catalyst-free vitrimers with high cross-link density, mechanical strength, and

期刊论文

Experimental investigation on mechanical properties of binary and ternary blended pervious concrete

Rekha SINGH, Sanjay GOEL

期刊论文

Mechanical properties characterization of different types of masonry infill walls

André FURTADO, Hugo RODRIGUES, António ARÊDE, Humberto VARUM

期刊论文

Experimental study on mechanical properties of a novel micro-steel fiber reinforced magnesium phosphate

期刊论文

Combination form analysis and experimental study of mechanical properties on steel sheet glass fiber

期刊论文

Micro-nanoarchitectonic of aluminum-hydrogel propellant with static stability and dynamic rheology

期刊论文

Mechanical properties of stabilized artificial organic soil

XU Riqing, GUO Yin, LIU Zengyong

期刊论文

高强钢筋混凝土预制弧板井壁力学特性分析

荣传新,王秀喜,程桦

期刊论文

Influence of the field humiture environment on the mechanical properties of 316L stainless steel repaired

Lianzhong ZHANG, Dichen LI, Shenping YAN, Ruidong XIE, Hongliang QU

期刊论文

Deep learning model for estimating the mechanical properties of concrete containing silica fume exposed

Harun TANYILDIZI, Abdulkadir ŞENGÜR, Yaman AKBULUT, Murat ŞAHİN

期刊论文

A bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow

期刊论文

Evaluating the material strength from fracture angle under uniaxial loading

Jitang FAN

期刊论文

Determination of mechanical parameters for elements in meso-mechanical models of concrete

Xianglin GU, Junyu JIA, Zhuolin WANG, Li HONG, Feng LIN

期刊论文

Machine learning based models for predicting compressive strength of geopolymer concrete

期刊论文