资源类型

期刊论文 8

年份

2021 3

2019 1

2018 1

2017 1

2011 1

2009 1

关键词

微生物选育 1

生物兼容性 1

生物表面活性剂 1

生物降解 1

酶催化 1

展开 ︾

检索范围:

排序: 展示方式:

Achieving biodegradability enhancement and acute biotoxicity removal through the treatment of pharmaceutical

Liang SUN, Can WANG, Min JI, Fen WANG

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 481-487 doi: 10.1007/s11783-011-0341-3

摘要: Actual pharmaceutical wastewater was treated using a combined ultrasonic irradiation (US) and iron/coke internal electrolysis (Fe/C) technology. A significant synergetic effect was observed, showing that ultrasonic irradiation dramatically enhanced the chemical oxygen demand (COD) removal efficiencies by internal electrolysis. The effects of primary operating factors on COD removal were evaluated systematically. Higher ultrasonic frequency and lower pH values as well as longer reaction time were favorable to COD removal. The ratio of biochemical oxygen demand (BOD) and COD (B/C) of the wastewater increased from 0.21 to 0.32 after US-Fe/C treatment. An acute biotoxicity assay measuring the inhibition of bioluminescence indicated that the wastewater with overall toxicity of 4.3 mg-Zn ·L was reduced to 0.5 mg-Zn ·L after treatment. Both the raw and the treated wastewater samples were separated and identified. The types of compounds suggested that the increased biodegradability and reduced biotoxicity resulted mainly from the destruction of N,N-2 dimethyl formamide and aromatic compounds in the pharmaceutical wastewater.

关键词: internal electrolysis     ultrasonic     pharmaceutical wastewater     biodegradability     acute biotoxicity    

Effect of wood dust type on mechanical properties, wear behavior, biodegradability, and resistance to

Sawan KUMAR, Ajitanshu VEDRTNAM, S. J. PAWAR

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1446-1462 doi: 10.1007/s11709-019-0568-9

摘要: The present work reports the inclusion of different proportions of Mango/Sheesham/Mahogany/Babool dust to polypropylene for improving mechanical, wear behavior and biodegradability of wood-plastic composite (WPC). The wood dust (10%, 15%, 20% by weight) was mixed with polypropylene granules and WPCs were prepared using an injection molding technique. The mechanical, wear, and morphological characterizations of fabricated WPCs were carried out using standard ASTM methods, pin on disk apparatus, and scanning electron microscopy (SEM), respectively. Further, the biodegradability and resistance to natural weathering of WPCs were evaluated following ASTM D5338-11 and ASTM D1435-99, respectively. The WPCs consisting of Babool and Sheesham dust were having superior mechanical properties whereas the WPCs consisting of Mango and Mahogany were more wear resistant. It was found that increasing wood powder proportion results in higher Young’s modulus, lesser wear rate, and decreased stress at break. The WPCs made of Sheesham dust were least biodegradable. It was noticed that the biodegradability corresponds with resistance to natural weathering; more biodegradable WPCs were having the lesser resistance to natural weathering.

关键词: wood-plastic composites     mechanical testing     wear     biodegradability     injection molding     weathering    

Correction to: Effect of wood dust type on mechanical properties, wear behavior, biodegradability, and

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1071-1071 doi: 10.1007/s11709-021-0736-6

High-solid anaerobic digestion of sewage sludge: achievements and perspectives

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1364-4

摘要:

• High-solid anaerobic digestion (HS-AD) of sewage sludge (SS) is overviewed.

关键词: High-solid effect     Anaerobic fermentation     Methane production     Biodegradability     Sludge treatment    

A mini review: Shape memory polymers for biomedical applications

Kaojin Wang, Satu Strandman, X. X. Zhu

《化学科学与工程前沿(英文)》 2017年 第11卷 第2期   页码 143-153 doi: 10.1007/s11705-017-1632-4

摘要: Shape memory polymers (SMPs) are smart materials that can change their shape in a pre-defined manner under a stimulus. The shape memory functionality has gained considerable interest for biomedical applications, which require materials that are biocompatible and sometimes biodegradable. There is a need for SMPs that are prepared from renewable sources to be used as substitutes for conventional SMPs. In this paper, advances in SMPs based on synthetic monomers and bio-compounds are discussed. Materials designed for biomedical applications are highlighted.

关键词: shape memory polymer     biodegradability     biocompatibility     biomedical application     bile acids    

Degradation of refractory organics in concentrated leachate by the Fenton process: Central composite design for process optimization

Senem Yazici Guvenc, Gamze Varank

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1294-1

摘要: Abstract • 90% total COD, 95.3% inert COD and 97.2% UV254 were removed. • High R2 values (over 95%) for all responses were obtained with CCD. • Operational cost was calculated to be 0.238 €/g CODremoved for total COD removal. • Fenton oxidation was highly-efficient method for inert COD removal. • BOD5/COD ratio of leachate concentrate raised from 0.04 to 0.4. The primary aim of this study is inert COD removal from leachate nanofiltration concentrate because of its high concentration of resistant organic pollutants. Within this framework, this study focuses on the treatability of leachate nanofiltration concentrate through Fenton oxidation and optimization of process parameters to reach the maximum pollutant removal by using response surface methodology (RSM). Initial pH, Fe2+ concentration, H2O2/Fe2+ molar ratio and oxidation time are selected as the independent variables, whereas total COD, color, inert COD and UV254 removal are selected as the responses. According to the ANOVA results, the R2 values of all responses are found to be over 95%. Under the optimum conditions determined by the model (pH: 3.99, Fe2+: 150 mmol/L, H2O2/Fe2+: 3.27 and oxidation time: 84.8 min), the maximum COD removal efficiency is determined as 91.4% by the model. The color, inert COD and UV254 removal efficiencies are determined to be 99.9%, 97.2% and 99.5%, respectively, by the model, whereas the total COD, color, inert COD and UV254 removal efficiencies are found respectively to be 90%, 96.5%, 95.3% and 97.2%, experimentally under the optimum operating conditions. The Fenton process improves the biodegradability of the leachate NF concentrate, increasing the BOD5/COD ratio from the value of 0.04 to the value of 0.4. The operational cost of the process is calculated to be 0.238 €/g CODremoved. The results indicate that the Fenton oxidation process is an efficient and economical technology in improvement of the biological degradability of leachate nanofiltration concentrate and in removal of resistant organic pollutants.

关键词: Concentrated leachate     Fenton oxidation     Central composite design     Biodegradability     Inert COD    

生物表面活性剂的生产与应用

韩双艳,任昌琼,林影

《中国工程科学》 2009年 第11卷 第4期   页码 26-30

摘要:

生物表面活性剂主要由微生物发酵和酶催化下合成,具有表面活性剂基本结构与性质的物质,其除了具有化学表面活性剂的特点外,还具有生物兼容性高、安全无毒性、可被生物降解、不会对环境造成不利影响等优点。随着环保意识的增强和食品安全级别的提高,生物表面活性剂开始应用于食品、医药、化妆品、洗涤剂和石油化工等领域,研究开发各种高效、低成本的生物表面活性剂生产技术成为生物化工的研究热点。

关键词: 生物表面活性剂     微生物选育     酶催化     生物兼容性     生物降解    

Synthesis and characterization of biodegradable thermoplastic elastomers derived from N′,N-bis (2-carboxyethyl)-pyromellitimide, poly(butylene succinate) and polyethylene glycol

Jiaojiao Shang, Guo Yao, Ronghui Guo, Wei Zheng, Long Gu, Jianwu Lan

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 457-466 doi: 10.1007/s11705-018-1716-9

摘要:

Biodegradable poly(ether-imide-ester) elastomers were synthesized from succinic acid, 1,4-butanediol, polyethylene glycol 1000 and N′,N-bis(2-carboxyethyl)-pyromellitimide which was derived from pyromellitic dianhydride and glycine. The chemical structures, crystallinities, thermal stabilities, mechanical properties, hydrophilicities and biodegradabilities of these elastomers were investigated. The hard segments of the linear aliphatic poly(ether-ester) exhibited monoclinic chain packing. Increasing the amount of aromatic bisimide moieties in the poly(ether-ester) reduced the crystallinity of the material and improved the thermal stability and tensile strength of the elastomers. In addition, introducing a suitable amount of aromatic bisimide moieties into the poly(ether-ester) backbones endowed the elastomers with improved biodegradability but too many aromatic bisimide groups reduced the biodegradability of the elastomers.

关键词: thermoplastic elastomers     biodegradability     thermo-stability     mechanical property     aromatic bisimide moiety    

标题 作者 时间 类型 操作

Achieving biodegradability enhancement and acute biotoxicity removal through the treatment of pharmaceutical

Liang SUN, Can WANG, Min JI, Fen WANG

期刊论文

Effect of wood dust type on mechanical properties, wear behavior, biodegradability, and resistance to

Sawan KUMAR, Ajitanshu VEDRTNAM, S. J. PAWAR

期刊论文

Correction to: Effect of wood dust type on mechanical properties, wear behavior, biodegradability, and

期刊论文

High-solid anaerobic digestion of sewage sludge: achievements and perspectives

期刊论文

A mini review: Shape memory polymers for biomedical applications

Kaojin Wang, Satu Strandman, X. X. Zhu

期刊论文

Degradation of refractory organics in concentrated leachate by the Fenton process: Central composite design for process optimization

Senem Yazici Guvenc, Gamze Varank

期刊论文

生物表面活性剂的生产与应用

韩双艳,任昌琼,林影

期刊论文

Synthesis and characterization of biodegradable thermoplastic elastomers derived from N′,N-bis (2-carboxyethyl)-pyromellitimide, poly(butylene succinate) and polyethylene glycol

Jiaojiao Shang, Guo Yao, Ronghui Guo, Wei Zheng, Long Gu, Jianwu Lan

期刊论文