资源类型

期刊论文 2

年份

2021 1

2011 1

关键词

检索范围:

排序: 展示方式:

Effects of Fe(II) on anammox community activity and physiologic response

Jing Ding, Wanyi Seow, Jizhong Zhou, Raymond Jianxiong Zeng, Jun Gu, Yan Zhou

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1299-9

摘要: Abstract • 0.12 mmol/L Fe(II) enhanced the total anammox activity and bacterial abundance best. • 0.09 mmol/L Fe(II) led to the best performance on relative anammox activity. • 0.75 mmol/L Fe(II) had an immediate but recoverable inhibition on anammox activity. • More genes but not relative level were expressed at higher Fe(II) concentration. Though there are many literatures studying the effects of iron on anammox process, these studies only focus on the reactor performance and/or the microbial community changes, the detailed effects and mechanisms of Fe(II) on anammox bacterial activity and physiology have not been explored. In this study, four Fe(II) concentrations (0.03, 0.09, 0.12 and 0.75 mmol/L) were employed into the enriched anammox culture. The enhancement and inhibition effects of Fe(II) on anammox process and bacterial physiology were investigated. It was discovered that the anammox process and bacterial growth were enhanced by 0.09 and 0.12 mmol/L Fe(II), in which the 0.12 mmol/L Fe(II) had advantage in stimulating the total anammox activity and bacterial abundance, while 0.09 mmol/L Fe(II) enhanced the relative anammox activity better. The anammox activity could be inhibited by 0.75 mmol/L Fe(II) immediately, while the inhibition was recoverable. Both 0.09 and 0.12 mmol/L Fe(II) induced more genes being expressed, while didn’t show a stimulation on the relative expression level of functional genes. And anammox bacteria showed a stress response to detoxify the Fe inhibition once inhibited by 0.75 mmol/L Fe(II). This study provides more information about physiologic response of anammox bacteria to external influence (enhancement and inhibition), and may also instruct the future application of anammox process in treating various sources of wastewater (containing external disturbances such as heavy metals) and/or different treatment strategies (e.g. from side-stream to main-stream).

关键词: Anaerobic ammonium oxidation (Anammox)     Candidatus Kuenenia stuttgartiensis     Ferrous iron     GeoChip    

Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities

Zhili HE, Joy D. VAN NOSTRAND, Ye DENG, Jizhong ZHOU

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 1-20 doi: 10.1007/s11783-011-0301-y

摘要: Functional gene arrays (FGAs) are a special type of microarrays containing probes for key genes involved in microbial functional processes, such as biogeochemical cycling of carbon, nitrogen, sulfur, phosphorus, and metals, biodegradation of environmental contaminants, energy processing, and stress responses. GeoChips are considered as the most comprehensive FGAs. Experimentally established probe design criteria and a computational pipeline integrating sequence retrieval, probe design and verification, array construction, data analysis, and automatic update are used to develop the GeoChip technology. GeoChip has been systematically evaluated and demonstrated to be a powerful tool for rapid, specific, sensitive, and quantitative analysis of microbial communities in a high-throughput manner. Several generations of GeoChip have been developed and applied to investigate the functional diversity, composition, structure, function, and dynamics of a variety of microbial communities from different habitats, such as water, soil, marine, bioreactor, human microbiome, and extreme ecosystems. GeoChip is able to address fundamental questions related to global change, bioenergy, bioremediation, agricultural operation, land use, human health, environmental restoration, and ecological theories and to link the microbial community structure to environmental factors and ecosystem functioning.

关键词: functional gene arrays (FGAs)     GeoChip     microbial communities     functional diversity/composition/structure     environmental factor     ecosystem functioning    

标题 作者 时间 类型 操作

Effects of Fe(II) on anammox community activity and physiologic response

Jing Ding, Wanyi Seow, Jizhong Zhou, Raymond Jianxiong Zeng, Jun Gu, Yan Zhou

期刊论文

Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities

Zhili HE, Joy D. VAN NOSTRAND, Ye DENG, Jizhong ZHOU

期刊论文