资源类型

期刊论文 4

年份

2020 2

2019 1

2015 1

关键词

检索范围:

排序: 展示方式:

Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases

null

《医学前沿(英文)》 2015年 第9卷 第3期   页码 288-303 doi: 10.1007/s11684-015-0412-0

摘要:

Toll-like receptors (TLRs), which are found in innate immune cells, are essential mediators of rapid inflammatory responses and appropriate T-cell activation in response to infection and tissue damage. Accumulating evidence suggests that TLR signaling is involved in normal hematopoiesis and specific hematologic pathologies. Particular TLRs and their downstream signaling mediators are expressed not only in terminally differentiated innate immune cells but also in early hematopoietic progenitors. Sterile activation of TLR signaling is required to generate early embryonic hematopoietic progenitor cells. In adult animals, TLR signaling directly or indirectly promotes differentiation of myeloid cells at the expense of that of lymphoid cells and the self-renewal of hematopoietic stem cells during infection and tissue damage. Activating mutations of the MyD88 gene, which codes for a key adaptor involved in TLR signaling, are commonly detected in B-cell lymphomas and other B-cell hematopathologies. Dysregulated TLR signaling contributes to the pathogenesis of many hematopoietic disorders, including bone marrow failure, myelodysplastic syndrome, and acute myeloid leukemia. Complete elucidation of the molecular mechanisms by which TLR signaling mediates the regulation of both normal and pathogenic hematopoiesis will prove valuable to the development of targeted therapies and strategies for improved treatment of hematopoietic disorders.

关键词: TLR     MyD88     hematopoiesis     bone marrow failure     leukemia     myelodysplastic syndrome    

Human-cyber-physical systems: concepts, challenges, and research opportunities

Zhiming Liu, Ji Wang,zhimingliu88@swu.edu.cn,jiwang@ios.ac.cn

《信息与电子工程前沿(英文)》 2020年 第21卷 第11期   页码 1535-1670 doi: 10.1631/FITEE.2000537

摘要: In this perspective article, we first recall the historic background of human-cyber-physical systems (HCPSs), and then introduce and clarify important concepts. We discuss the key challenges in establishing the scientific foundation from a system engineering point of view, including (1) complex heterogeneity, (2) lack of appropriate , (3) dynamic black-box integration of heterogeneous systems, (4) complex requirements for functionalities, performance, and quality of services, and (5) design, implementation, and maintenance of HCPS to meet requirements. Then we propose four research directions to tackle the challenges, including (1) and computational theory of HCPS, (2) theories and methods of HCPS , (3) specification and verification of model properties, and (4) software-defined HCPS. The article also serves as the editorial of this special section on cyber-physical systems and summarises the four articles included in this special section.

Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of

Hang Zhang, Shuo Chen, Haiguang Zhang, Xinfei Fan, Cong Gao, Hongtao Yu, Xie Quan

《环境科学与工程前沿(英文)》 2019年 第13卷 第2期 doi: 10.1007/s11783-019-1101-z

摘要:

CNTs were incorporated into MIL-88B-Fe to get a new Fenton-like catalyst (C@M).

Fe(II) was introduced in C@M to get a fast initiation of Fenton-like reaction.

Fe(II) content in C@M was related with oxygen-containing functional groups on CNTs.

C@M shows efficient catalytic degradation of pollutants over a wide pH range.

关键词: Heterogeneous Fenton-like catalysts     MIL-88B-Fe     CNTs     Organic pollutants     Mechanism    

process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101(Fe) and MIL-88

Ehsan Rahmani, Mohammad Rahmani

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1100-1111 doi: 10.1007/s11705-019-1891-3

摘要: A solvothermal method was used to synthesize MIL-101(Fe) and MIL-88(Fe), which were used for alkylation of benzene. The synthesized catalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscope, dynamic light scattering, and BET techniques. Metal-organic frameworks (MOFs) were modeled to investigate the catalytic performance and existence of mass transfer limitations. Calculated effectiveness factors revealed absence of internal and external mass transfer. Sensitivity analysis revealed best operating conditions over MIL-101 at 120°C and 5 bar and over MIL-88 at 142°C and 9 bar.

关键词: MOFs     alkylation     ethylbenzene     catalysts pellet model     kinetic model     sensitivity analysis    

标题 作者 时间 类型 操作

Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases

null

期刊论文

Human-cyber-physical systems: concepts, challenges, and research opportunities

Zhiming Liu, Ji Wang,zhimingliu88@swu.edu.cn,jiwang@ios.ac.cn

期刊论文

Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of

Hang Zhang, Shuo Chen, Haiguang Zhang, Xinfei Fan, Cong Gao, Hongtao Yu, Xie Quan

期刊论文

process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101(Fe) and MIL-88

Ehsan Rahmani, Mohammad Rahmani

期刊论文