资源类型

期刊论文 1894

会议视频 178

会议信息 6

会议专题 2

年份

2024 168

2023 262

2022 283

2021 362

2020 154

2019 86

2018 75

2017 80

2016 65

2015 65

2014 62

2013 65

2012 49

2011 43

2010 62

2009 47

2008 33

2007 55

2006 9

2005 3

展开 ︾

关键词

碳中和 28

绿色化工 22

钢结构 16

信息技术 15

人工智能 11

桥梁隧道 11

智能制造 9

核能 9

高分子材料 9

SARS-CoV-2 8

营养健康 6

COVID-19 5

微波散射计 5

机器学习 5

5G 4

Cu(In 4

HY-2 4

N-糖基化 4

能源 4

展开 ︾

检索范围:

排序: 展示方式:

Physical and chemical processes of wintertime secondary nitrate aerosol formation

Qi YING

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 348-361 doi: 10.1007/s11783-011-0343-1

摘要: The UCD/CIT model was modified to include a process analysis (PA) scheme for gas and particulate matter (PM) to study the formation of secondary nitrate aerosol during a stagnant wintertime air pollution episode during the California Regional PM /PM Air Quality Study (CRPAQS) where detailed measurements of PM components are available at a few sites. Secondary nitrate is formed in the urban areas from near the ground to a few hundred meters above the surface during the day with a maximum modeled net increase rate of 4 μg·m ·d during the study episode. The secondary nitrate formation rate in rural areas is lower due to lower NO . In the afternoon hours, near-surface temperature can be high enough to evaporate the particulate nitrate. In the nighttime hours, both the gas phase N O reactions with water vapor and the N O heterogeneous reactions with particle-bound water are important for secondary nitrate formation. The N O reactions are most import near the surface to a few hundred meters above surface with a maximum modeled net secondary nitrate increase rate of 1 μg·m ·d and are more significant in the rural areas where the O concentrations are high at night. In general, vertical transport during the day moves the nitrate formed near the surface to higher elevations. During the stagnant days, process analysis indicates that the nitrate concentration in the upper air builds up and leads to a net downward flux of nitrate through vertical diffusion and a rapid increase of surface nitrate concentration.

关键词: secondary nitrate aerosol     N2O5 heterogeneous reaction     process analysis    

Atmospheric heterogeneous reaction of chlorobenzene on mineral -FeO particulates: a chamber experiment

《环境科学与工程前沿(英文)》 2023年 第17卷 第11期 doi: 10.1007/s11783-023-1734-9

摘要:

● Photochemical conversion of chlorobenzene (CB) on α-Fe2O3 was evaluated.

关键词: Photochemical conversion     Chlorobenzene     α-Fe2O3     PCDD/Fs     Mineral particulate    

Enhanced photocatalytic N fixation using KNbO/BiOBr type II heterojunction

《化学科学与工程前沿(英文)》 2024年 第18卷 第6期 doi: 10.1007/s11705-024-2424-2

摘要: The fabrication of heterojunction catalysts is an effective strategy to enhance charge separation efficiency, thus boosting the performance of photocatalysts. This work presents the synthesis and investigation of a novel KNbO3/Bi4O5Br2 heterostructure catalyst for photocatalytic N2–to–NH3 conversion under light illumination. While morphology analysis revealed KNbO3 microcubes embedded within Bi4O5Br2 nanosheets, the composite exhibited no significant improvement in specific surface area or optical property compared to Bi4O5Br2 due to the relatively wide band gap and low surface area of KNbO3. The main contribution lies in the enhanced separation efficiency of photogenerated electrons and holes. Besides, the band structure analysis suggests that KNbO3 and Bi4O5Br2 exhibit suitable band potentials to form a type II heterojunction. Benefiting from the higher Fermi level of KNbO3 than Bi4O5Br2, the electron drift at the contact region thus occurs and leads to the formation of a built-in electric field with the direction from KNbO3 to Bi4O5Br2, accelerating electron migration and improving the operational efficiency of the photocatalysts. Consequently, the KNbO3/Bi4O5Br2 catalyst shows an increased photoactivity, achieving an NH3 generation rate 1.78 and 1.58 times those of KNbO3 and Bi4O5Br2, respectively. This work may offer valuable insights for the design and synthesis of heterojunction composite photocatalysts.

关键词: KNbO3/Bi4O5Br2     heterojunction     photocatalytic N2 fixation     charge separation    

Construction of robust and durable CuSe–VO nanosheet electrocatalyst for alkaline oxygen evolution reaction

《化学科学与工程前沿(英文)》 2024年 第18卷 第6期 doi: 10.1007/s11705-024-2420-6

摘要: Reducing the production costs of clean energy carriers such as hydrogen through scalable water electrolysis is a potential solution for advancing the hydrogen economy. Among the various material candidates, our group demonstrated transition-metal-based materials with tunable electronic characteristics, various phases, and earth-abundance. Herein, electrochemical water oxidation using Cu2Se–V2O5 as a non-precious metallic electrocatalyst via a hydrothermal approach is reported. The water-splitting performance of all the fabricated electrocatalysts was evaluated after direct growth on a stainless-steel substrate. The electrochemically tuned Cu2Se–V2O5 catalyst exhibited a reduced overpotential of 128 mV and provided a reduced Tafel slope of 57 mV·dec–1 to meet the maximum current density of 250 mA·cm–2. The optimized strategy for interfacial coupling of the fabricated Cu2Se–V2O5 catalyst resulted in a porous structure with accessible active sites, which enabled adsorption of the intermediates and afforded an effective charge transfer rate for promoting the oxygen evolution reaction. Furthermore, the combined effect of the catalyst components provided long-term stability for over 110 h in an alkaline solution, which makes the catalyst promising for large-scale practical applications. The aforementioned advantages of the composite catalyst overcome the limitations of low conductivity, agglomeration, and poor stability of the pure catalysts (Cu2Se and V2O5).

关键词: oxygen evolution reaction     Cu2Se–V2O5 composite     nanosheets     metal-diffused ions     accessible adsorption sites    

Rh2O3/hexagonal CePO4 nanocatalysts for N2O decomposition

Huan Liu, Zhen Ma

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 586-593 doi: 10.1007/s11705-017-1659-6

摘要: Hexagonal CePO nanorods were prepared by a precipitation method and hexagonal CePO nanowires were prepared by hydrothermal synthesis at 150 °C. Rh(NO ) was then used as a precursor for the impregnation of Rh O onto these CePO materials. The Rh O supported on the CePO nanowires was much more active for the catalytic decomposition of N O than the Rh O supported on CePO nanorods. The stability of both catalysts as a function of time on stream was studied and the influence of the co-feed (CO , O , H O or O /H O) on the N O decomposition was also investigated. The samples were characterized by N adsorption-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron microscopy, hydrogen temperature-programmed reduction, oxygen temperature-programmed desorption, and CO temperature-programmed desorption in order to correlate the physicochemical and catalytic properties.

关键词: Rh2O3     CePO4     N2O decomposition    

Endemicity of H9N2 and H5N1 avian influenza viruses in poultry in China poses a serious threat to poultry

Jiao HU,Xiufan LIU

《农业科学与工程前沿(英文)》 2016年 第3卷 第1期   页码 11-24 doi: 10.15302/J-FASE-2016092

摘要: The H9N2 and H5N1 avian influenza viruses (AIVs) have been circulating in poultry in China and become endemic since 1998 and 2004, respectively. Currently, they are prevalent in poultry throughout China. This endemicity makes them actively involved in the emergence of the novel lineages of other subtypes of influenza viruses, such as the well-known viruses of the highly pathogenic avian influenza (HPAI) H5N2 and the 2013 novel H7N7, H7N9 and H10N8 subtypes, thereby threatening both the poultry industry and public health. Here, we will review briefly the prevalence and evolution, pathogenicity, transmission, and disease control of these two subtypes and also discuss the possibility of emergence of potentially virulent and highly transmissible AIVs to humans.

关键词: avian influenza virus     H9N2     H5N1     novel viruses     public health    

Dechlorination of 2,2′,4,4′,5,5′-hexachlorobiphenyl by thermal reaction with activated carbon-supported

Yifei SUN, Xin FU, Wei QIAO, Wei WANG, Tianle ZHU, Xinghua LI

《环境科学与工程前沿(英文)》 2013年 第7卷 第6期   页码 827-832 doi: 10.1007/s11783-013-0543-y

摘要: Activated carbon (AC)-supported copper or zinc made from ion exchange resin (IRCu-C and IRZn-C) have an increased metal load of 557.3 mg?g and 502.8 mg?g compared to those prepared by the traditional method involving impregnation with AC and copper (II) citrate or zinc citrate solution (LaCu-C and LaZn-C) of 12.9 mg?g and 46.0 mg?g respectively. When applied to decompose 2,2′,4,4′,5,5′-hexachlorobiphenyl at 250 °C, IRCu-C achieved higher activity of 99.0% decomposition efficiency than LaCu-C of 84.7%, IRZn-C of 90.5% and LaZn-C of 62.7%. When the reaction temperature rose to 350 °C, all the four kinds of reactants can decompose PCB-153 with efficiency above 90%. Further, X-ray photoelectron spectroscopy characterization of IRCu-C before and after the reaction indicated transformation of 19.1% of Cu atoms into Cu , illustrating that Cu is the active ingredient or electron donor promoting the decomposition of PCB-153. The mechanism underlying this process differs from a traditional H donor. However, there is no significant change on the surface of IRZn-C before and after the reaction, suggesting that Zn acts as catalyst during the process of PCB-153 decomposition.

关键词: polychlorinated biphenyls     activated carbon-supported copper or zinc     dechlorination     electron donor    

New insight into effect of potential on degradation of Fe-N-C catalyst for ORR

Yanyan GAO, Manman QI, Liang HE, Haiping CHEN, Wenzhe LUO, Ming HOU, Zhigang SHAO

《能源前沿(英文)》 2021年 第15卷 第2期   页码 421-430 doi: 10.1007/s11708-021-0727-2

摘要: In recent years, Fe-N-C catalyst is particularly attractive due to its high oxygen reduction reaction (ORR) activity and low cost for proton exchange membrane fuel cells (PEMFCs). However, the durability problems still pose challenge to the application of Fe-N-C catalyst. Although considerable work has been done to investigate the degradation mechanisms of Fe-N-C catalyst, most of them are simply focused on the active-site decay, the carbon oxidation, and the demetalation problems. In fact, the 2e pathway in the ORR process of Fe-N-C catalyst would result in the formation of H O , which is proved to be a key degradation source. In this paper, a new insight into the effect of potential on degradation of Fe-N-C catalyst was provided by quantifying the H O intermediate. In this case, stability tests were conducted by the potential-static method in O saturated 0.1 mol/L HClO . During the tests, H O was quantified by rotating ring disk electrode (RRDE). The results show that compared with the loading voltage of 0.4 V, 0.8 V, and 1.0 V, the catalysts being kept at 0.6 V exhibit a highest H O yield. It is found that it is the combined effect of electrochemical oxidation and chemical oxidation (by aggressive radicals like H O /radicals) that triggered the highest H O release rate, with the latter as the major cause.

关键词: proton exchange membrane fuel cells (PEMFCs)     oxygen reduction reaction (ORR)     Fe-N-C catalyst     potential     H2O2     degradation    

>In situ growth of phosphorized ZIF-67-derived amorphous CoP/Cu2O@CF electrocatalystfor efficient hydrogen evolution reaction

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1430-1439 doi: 10.1007/s11705-023-2320-1

摘要: Transition metal phosphides have been extensively studied for catalytic applications in water splitting. Herein, we report an in situ phosphorization of zeolitic imidazole frameworks (ZIF-67) to generate amorphous cobalt phosphide/ZIF-67 heterojunction on a self-supporting copper foam (CF) substrate with excellent performance for hydrogen evolution reaction (HER). The needle-leaf like copper hydroxide was anchored on CF surface, which acted as implantation to grow ZIF-67. The intermediate product was phosphorized to obtain final electrocatalyst (CoP/Cu2O@CF) with uniform particle size, exhibiting a rhombic dodecahedron structure with wrinkles on the surface. The electrochemical measurement proved that CoP/Cu2O@CF catalyst exhibited excellent HER activity and long-term stability in 1.0 mol·L–1 KOH solution. The overpotential was only 62 mV with the Tafel slope of 83 mV·dec–1 at a current density of 10 mA·cm–2, with a large electrochemical active surface area. It also showed competitive performance at large current which indicated the potential application to industrial water electrolysis to produce hydrogen. First-principle calculations illustrated that benefit from the construction of CoP/ZIF-67 heterojunction, the d-band center of CoP downshifted after bonding with ZIF-67 and the Gibbs free energy (ΔGH*) changed from –0.18 to –0.11 eV, confirming both decrease in overpotential and excellent HER activity. This work illustrates the efficient HER activity of CoP/Cu2O@CF catalyst, which will act as a potential candidate for precious metal electrocatalysts.

关键词: CoP/Cu2O@CF     electrocatalyst     phosphorization     HER     DFT    

NiCo2O4@quinone-rich N–C core–shell nanowires as composite electrode for electric double layer capacitor

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 373-386 doi: 10.1007/s11705-022-2223-6

摘要: The bind-free carbon cloth-supported electrodes hold the promises for high-performance electrochemical capacitors with high specific capacitance and good cyclic stability. Considering the close connection between their performance and the amount of carbon material loaded on the electrodes, in this work, NiCo2O4 nanowires were firstly grown on the substrate of active carbon cloth to provide the necessary surface area in the longitudinal direction. Then, the quinone-rich nitrogen-doped carbon shell structure was formed around NiCo2O4 nanowires, and the obtained composite was used as electrode for electric double layer capacitor. The results showed that the composite electrode displayed an area-specific capacitance of 1794 mF∙cm–2 at the current density of 1 mA∙cm–2. The assembled symmetric electric double layer capacitor achieved a high energy density of 6.55 mW∙h∙cm–3 at a power density of 180 mW∙cm–3. The assembled symmetric capacitor exhibited a capacitance retention of 88.96% after 10000 charge/discharge cycles at the current density of 20 mA∙cm–2. These results indicated the potentials in the preparation of the carbon electrode materials with high energy density and good cycling stability.

关键词: carbon cloth     NiCo2O4 nanowires     core−shell structure     quinone-rich     electric double layer capacitor    

N2O emission from a sequencing batch reactor for biological N and P removal from wastewater

Lei SHEN,Yuntao GUAN,Guangxue WU,Xinmin ZHAN

《环境科学与工程前沿(英文)》 2014年 第8卷 第5期   页码 776-783 doi: 10.1007/s11783-013-0586-0

摘要: Nitrous oxide (N O) is a greenhouse gas that can be released during biological nitrogen removal from wastewater. N O emission from a sequencing batch reactor (SBR) for biological nitrogen and phosphorus removal from wastewater was investigated, and the aims were to examine which process, nitrification or denitrification, would contribute more to N O emission and to study the effects of heterotrophic activities on N O emission during nitrification. The results showed that N O emission was mainly attributed to nitrification rather than to denitrification. N O emission during denitrification mainly occurred with stored organic carbon as the electron donor. During nitrification, N O emission was increased with increasing initial ammonium or nitrite concentrations. The ratio of N O emission to the removed ammonium nitrogen (N O-N/NH -N) was 2.5% in the SBR system with high heterotrophic activities, while this ratio was in the range from 0.14% to 1.06% in batch nitrification experiments with limited heterotrophic activities.

关键词: biological nutrient removal     denitrification     greenhouse gas     nitrification     nitrous oxide    

Heterogeneous reaction mechanism of gaseous HNO

Nan ZHAO,Qingzhu ZHANG,Wenxing WANG

《环境科学与工程前沿(英文)》 2016年 第10卷 第5期 doi: 10.1007/s11783-016-0836-z

摘要: We studied the heterogeneous reaction mechanism of gaseous HNO with solid NaCl. HCl is released from heterogeneous reactions between gaseous HNO and solid NaCl. Water molecules induce surface reconstruction of NaCl to facilitate the reaction. Sea salt particles containing NaCl are among the most abundant particulate masses in coastal atmosphere. Reactions involving sea salt particles potentially generate Cl radicals, which are released into coastal atmosphere. Cl radicals play an important role in the nitrogen and O cycles, sulfur chemistry and particle formation in the troposphere of the polluted coastal regions. This paper aimed at the heterogeneous reaction between gaseous HNO and solid NaCl. The mechanism was investigated by density functional theory (DFT). The results imply that water molecules induce the surface reconstruction, which is essential for the heterogeneous reaction. The surface reconstruction on the defective (710) surface has a barrier of 10.24 kcal·mol and is endothermic by 9.69 kcal·mol , whereas the reconstruction on the clean (100) surface has a barrier of 18.46 kcal·mol and is endothermic by 12.96 kcal·mol . The surface reconstruction involved in water-adsorbed (710) surface is more energetically favorable. In comparison, water molecules adsorbed on NaCl (100) surface likely undergo water diffusion or desorption. Further, it reveals that the coordination number of the Cl is reduced after the surface reconstruction, which assists Cl to accept the proton from HNO . HCl is released from heterogeneous reactions between gaseous HNO and solid NaCl and can react with OH free radicals to produce atomic Cl radicals. The results will offer further insights into the impact of gaseous HNO on the air quality of the coastal areas.

关键词: Seasalt particles     NaCl     HNO3     Heterogeneous reaction     Reaction mechanism     Density functional theory    

含稀释剂的Al-Cr2O3体系燃烧合成反应热力学分析与反应模型

张衍诚,潘冶,张传

《中国工程科学》 2004年 第6卷 第6期   页码 63-67

摘要:

对含稀释剂Al203和Cr<sub>2</sub>0<sub>3</sub>的Al-Cr<sub>2</sub>0<sub>3</sub>体系燃烧合成反应进行了热力学计算与分析,讨论了起始反应温度T<sub>0</sub>、稀释剂Al<sub>2</sub>O<sub>3</sub>和Cr<sub>2</sub>O<sub>3</sub>的含量对绝热反应温度7^的影响,并得出T<

关键词: 金属陶瓷     燃烧合成     Al-Cr203体系     热力学     反应模型    

On the monolayer dispersion behavior of Co3O4 on HZSM-5 support: designing applicable

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1741-1754 doi: 10.1007/s11705-023-2332-x

摘要: Based on monolayer dispersion theory, Co3O4/ZSM-5 catalysts with different loadings have been prepared for selective catalytic reduction of nitrogen oxides by ammonia. Co3O4 can spontaneously disperse on HZSM-5 support with a monolayer dispersion threshold of 0.061 mmol 100 m–2, equaling to a weight percentage around 4.5%. It has been revealed that the quantities of surface active oxygen (O2) and acid sites are crucial for the reaction, which can adsorb and activate NOx and NH3 reactants effectively. Below the monolayer dispersion threshold, Co3O4 is finely dispersed as sub-monolayers or monolayers and in an amorphous state, which is favorable to generate the two kinds of active sites, hence promoting the performance of ammonia selective catalytic reduction of nitrogen oxide. However, the formation of crystalline Co3O4 above the capacity is harmful to the reaction performance. 4% Co3O4/ZSM-5, the catalyst close to the monolayer dispersion capacity, possesses the most abundant active O2 species and acidic sites, thereby demonstrating the best reaction performance in all the samples. It is proposed the optimal Co3O4/ZSM-5 catalyst can be prepared by loading the capacity amount of Co3O4 onto HZSM-5 support.

关键词: Co3O4/ZSM-5     NOx-SCR by NH3     monolayer dispersion threshold effect     surface acid sites     surface active O2 anions    

Responses of bacterial strains isolated from drinking water environments to N-acyl-L-homoserine lactones

Zhuoying WU, Qing WANG, Feng GUO, Shenghua ZHANG, Qipei JIANG, Xin YU

《环境科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 205-214 doi: 10.1007/s11783-013-0492-5

摘要: Often as a result of biofilm formation, drinking water distribution systems (DWDS) are regularly faced with the problem of microbial contamination. Quorum sensing (QS) systems play a marked role in the regulation of microbial biofilm formation; thus, inhibition of QS systems may provide a promising approach to biofilm formation control in DWDS. In the present study, 22 bacterial strains were isolated from drinking water-related environments. The following properties of the strains were investigated: bacterial biofilm formation capacity, QS signal molecule N-acyl-L-homoserine lactones (AHLs) production ability, and responses to AHLs and AHL analogs, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and 2(5H)-furanone. Four AHLs were added to developed biofilms at dosages ranging from 0.1?nmol·L to 100 nmol·L . As a result, the biofilm growth of more than 1/4 of the isolates, which included AHL producers and non-producers, were significantly promoted. Further, the biofilm biomasses were closely associated with respective AHLs concentrations. These results provided evidence to support the idea that AHLs play a definitive role in biofilm formation in many of the studied bacteria. Meanwhile, two AHLs analogs demonstrated unexpectedly minimal negative effects on biofilm formation. This suggested that, in order to find an applicable QS inhibition approach for biofilm control in DWDS, the testing and analysis of more analogs is needed.

关键词: drinking water distribution systems (DWDS)     biofilm     quorum sensing (QS)     N-acyl-L-homoserine lactones (AHLs)     (dichloromethyl)-5-hydroxy-2(5H)-furanone (MX)     2(5H)-furanone    

标题 作者 时间 类型 操作

Physical and chemical processes of wintertime secondary nitrate aerosol formation

Qi YING

期刊论文

Atmospheric heterogeneous reaction of chlorobenzene on mineral -FeO particulates: a chamber experiment

期刊论文

Enhanced photocatalytic N fixation using KNbO/BiOBr type II heterojunction

期刊论文

Construction of robust and durable CuSe–VO nanosheet electrocatalyst for alkaline oxygen evolution reaction

期刊论文

Rh2O3/hexagonal CePO4 nanocatalysts for N2O decomposition

Huan Liu, Zhen Ma

期刊论文

Endemicity of H9N2 and H5N1 avian influenza viruses in poultry in China poses a serious threat to poultry

Jiao HU,Xiufan LIU

期刊论文

Dechlorination of 2,2′,4,4′,5,5′-hexachlorobiphenyl by thermal reaction with activated carbon-supported

Yifei SUN, Xin FU, Wei QIAO, Wei WANG, Tianle ZHU, Xinghua LI

期刊论文

New insight into effect of potential on degradation of Fe-N-C catalyst for ORR

Yanyan GAO, Manman QI, Liang HE, Haiping CHEN, Wenzhe LUO, Ming HOU, Zhigang SHAO

期刊论文

>In situ growth of phosphorized ZIF-67-derived amorphous CoP/Cu2O@CF electrocatalystfor efficient hydrogen evolution reaction

期刊论文

NiCo2O4@quinone-rich N–C core–shell nanowires as composite electrode for electric double layer capacitor

期刊论文

N2O emission from a sequencing batch reactor for biological N and P removal from wastewater

Lei SHEN,Yuntao GUAN,Guangxue WU,Xinmin ZHAN

期刊论文

Heterogeneous reaction mechanism of gaseous HNO

Nan ZHAO,Qingzhu ZHANG,Wenxing WANG

期刊论文

含稀释剂的Al-Cr2O3体系燃烧合成反应热力学分析与反应模型

张衍诚,潘冶,张传

期刊论文

On the monolayer dispersion behavior of Co3O4 on HZSM-5 support: designing applicable

期刊论文

Responses of bacterial strains isolated from drinking water environments to N-acyl-L-homoserine lactones

Zhuoying WU, Qing WANG, Feng GUO, Shenghua ZHANG, Qipei JIANG, Xin YU

期刊论文