资源类型

期刊论文 540

会议视频 6

年份

2024 1

2023 38

2022 46

2021 53

2020 34

2019 53

2018 30

2017 34

2016 21

2015 26

2014 23

2013 31

2012 13

2011 25

2010 18

2009 28

2008 19

2007 16

2006 2

2005 5

展开 ︾

关键词

固体氧化物燃料电池 8

燃料电池 7

SOFC 2

临床试验 2

催化剂 2

双极板 2

固体氧化物电解池 2

太阳电池 2

干细胞 2

氢燃料电池 2

氢能 2

燃烧特性 2

生物质 2

碳中和 2

碳基燃料 2

组织工程 2

高压 2

2035 1

300 M钢 1

展开 ︾

检索范围:

排序: 展示方式:

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

《能源前沿(英文)》 2019年 第13卷 第2期   页码 325-338 doi: 10.1007/s11708-019-0618-y

摘要: Polymer electrolyte membrane (PEM) fuel cell is the most promising among the various types of fuel cells. Though it has found its applications in numerous fields, the cost and durability are key barriers impeding the commercialization of PEM fuel cell stack. The crucial and expensive component involved in it is the gas diffusion electrode (GDE) and its degradation, which limits the performance and life of the fuel cell stack. A critical analysis and comprehensive understanding of the structural and functional properties of various materials involved in the GDE can help us to address the related durability and cost issues. This paper reviews the key GDE components, and in specific, the root causes influencing the durability. It also envisages the role of novel materials and provides a critical recommendation to improve the GDE durability.

关键词: PEM fuel cell     gas diffusion electrode(GDE)     gas diffusion layer(GDL)     membrane electrode assembly     durability     fuel cell catalyst    

A linear quadratic regulator control of a stand-alone PEM fuel cell power plant

Amar BENAISSA, Boualaga RABHI, Ammar MOUSSI, Dahmani AISSA

《能源前沿(英文)》 2014年 第8卷 第1期   页码 62-72 doi: 10.1007/s11708-013-0291-5

摘要: This paper introduces a technique based on linear quadratic regulator (LQR) to control the output voltage at the load point versus load variation from a stand-alone proton exchange membrane (PEM) fuel cell power plant (FCPP) for a group housing use. The controller modifies the optimal gains by minimizing a cost function, and the phase angle of the AC output voltage to control the active and reactive power output from an FCPP to match the terminal load. The control actions are based on feedback signals from the terminal load, output voltage and fuel cell feedback current. The topology chosen for the simulation consists of a 45 kW proton exchange membrane fuel cell (PEMFC), boost type DC/DC converter, a three-phase DC/AC inverter followed by an LC filter. Simulation results show that the proposed control strategy operated at low commutation frequency (2 kHz) offers good performances versus load variations with low total harmonic distortions (THD) , which is very useful for high power applications.

关键词: modeling of proton exchange membrane fuel cell (PEMFC)     controlling of PEMFC     linear quadratic regulator (LQR)     DC/DC converter     DC/AC inverter    

Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell

Tian TIAN, Jianjun TANG, Wei GUO, Mu PAN

《能源前沿(英文)》 2017年 第11卷 第3期   页码 326-333 doi: 10.1007/s11708-017-0489-z

摘要: In this paper, a novel accelerated test method was proposed to analyze the durability of MEA, considering the actual operation of the fuel cell vehicle. The proposed method includes 7 working conditions: open circuit voltage (OCV), idling, rated output, overload, idling-rated cycle, idling-overload cycle, and OCV-idling cycle. The experimental results indicate that the proposed method can effectively destroy the MEA in a short time (165 h). Moreover, the degradation mechanism of MEA was analyzed by measuring the polarization curve, CV, SEM and TEM. This paper may provide a new research direction for improving the durability of fuel cell.

关键词: polymer electrolyte membrane fuel cell     accelerated life-time test     load cycling test     durability    

Recent advances in cathode electrocatalysts for PEM fuel cells

Junliang ZHANG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 137-148 doi: 10.1007/s11708-011-0153-y

摘要: Great progress has been made in the past two decades in the development of the electrocatalysts for proton exchange membrane fuel cells (PEMFCs). This review article is focused on recent advances made in the kinetic-activity improvement on platinum- (Pt-) based cathode electrocatalysts for the oxygen reduction reaction (ORR). The origin of the limited ORR activity of Pt catalysts is discussed, followed by a review on the development of Pt alloy catalysts, Pt monolayer catalysts, and shape- and facet-controlled Pt-alloy nanocrystal catalysts. Mechanistic understanding is reviewed as well on the factors contributing to the enhanced ORR activity of these catalysts. Finally, future directions for PEMFC catalyst research are proposed.

关键词: proton exchange membrane fuel cells (PEMFCs)     cathode electrocatalysts     platinum     oxygen reduction reaction (ORR)    

Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

Gang WU

《能源前沿(英文)》 2017年 第11卷 第3期   页码 286-298 doi: 10.1007/s11708-017-0477-3

摘要: To significantly reduce the cost of proton exchange membrane fuel cells, platinum-group metal (PGM)-free cathode catalysts are highly desirable. Current M-N-C (M: Fe, Co or Mn) catalysts are considered the most promising due to their encouraging performance. The challenge thus has been their stability under acidic conditions, which has hindered their use for any practical applications. In this review, based on the author’s research experience in the field for more than 10 years, current challenges and possible solutions to overcome these problems were discussed. The current Edisonian approach (i.e., trial and error) to developing PGM-free catalysts has been ineffective in achieving revolutionary breakthroughs. Novel synthesis techniques based on a more methodological approach will enable atomic control and allow us to achieve optimal electronic and geometric structures for active sites uniformly dispersed within the 3D architectures. Structural and chemical controlled precursors such as metal-organic frameworks are highly desirable for making catalysts with an increased density of active sites and strengthening local bonding structures among N, C and metals. Advanced electrochemical and physical characterization, such as electron microscopy and X-ray absorption spectroscopy should be combined with first principle density functional theory (DFT) calculations to fully elucidate the active site structures.

关键词: oxygen reduction     fuel cells     cathode     nonprecious metal catalysts     carbon nanocomposites    

Effect of catalyst layer mesoscopic pore-morphology on cold start process of PEM fuel cells

Ahmed Mohmed DAFALLA, Fangming JIANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 460-472 doi: 10.1007/s11708-021-0733-4

摘要: Water transport is of paramount importance to the cold start of proton exchange membrane fuel cells (PEMFCs). Analysis of water transport in cathode catalyst layer (CCL) during cold start reveals the distinct characteristics from the normal temperature operation. This work studies the effect of CCL mesoscopic pore-morphology on PEMFC cold start. The CCL mesoscale morphology is characterized by two tortuosity factors of the ionomer network and pore structure, respectively. The simulation results demonstrate that the mesoscale morphology of CCL has a significant influence on the performance of PEMFC cold start. It was found that cold-starting of a cell with a CCL of less tortuous mesoscale morphology can succeed, whereas starting up a cell with a CCL of more tortuous mesoscale morphology may fail. The CCL of less tortuous pore structure reduces the water back diffusion resistance from the CCL to proton exchange membrane (PEM), thus enhancing the water storage in PEM, while reducing the tortuosity in ionomer network of CCL is found to enhance the water transport in and the water removal from CCL. For the sake of better cold start performance, novel preparation methods, which can create catalyst layers of larger size primary pores and less tortuous pore structure and ionomer network, are desirable.

关键词: cold start     energy conversion     fuel cells     mesoscale morphology     tortuosity     water management    

Modeling nanostructured catalyst layer in PEMFC and catalyst utilization

Jiejing ZHANG, Pengzhen CAO, Li XU, Yuxin WANG

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 297-302 doi: 10.1007/s11705-011-1201-1

摘要: A lattice model of the nanoscaled catalyst layer structure in proton exchange membrane fuel cells (PEMFC) was established by Monte Carlo method. The model takes into account all the four components in a typical PEMFC catalyst layer: platinum (Pt), carbon, ionomer and pore. The elemental voxels in the lattice were set fine enough so that each average sized Pt particulate in Pt/C catalyst can be represented. Catalyst utilization in the modeled catalyst layer was calculated by counting up the number of facets of Pt voxels where “three phase contact” are met. The effects of some factors, including porosity, ionomer content, Pt/C particle size and Pt weight percentage in the Pt/C catalyst, on catalyst utilization were investigated and discussed.

关键词: catalyst layer     PEM fuel cell     lattice model     Monte Carlo method     catalyst utilization    

质子交换膜燃料电池的研究进展

任学佑

《中国工程科学》 2005年 第7卷 第1期   页码 86-94

摘要:

论述了质子交换膜燃料电池的开发现状及国内外研究进展;同时介绍了趋于成熟的贮氢技术,包括质子交换膜、双极板、膜电极和电催化剂在内的关键技术、应用以及未来展望。

关键词: 燃料电池     质子交换膜     双极板     膜电极     电催化剂     开发现状    

Failure mode investigation of fuel cell for vehicle application

Zhongjun HOU, Renfang WANG, Keyong WANG, Weiyu SHI, Danming XING, Hongchun JIANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 318-325 doi: 10.1007/s11708-017-0488-0

摘要: The durability of proton exchange membrane fuel cells (PEMFCs) has been posing a key technical challenge to commercial spread of fuel cell vehicles (FCVs). To improve the durability, it is necessary to optimize the fuel cell system (FCS) design against failure modes. The fuel cell durability research method at FCS scale was exhibited, and the failure modes of fuel cell were experimentally investigated in this paper. It is found that the fuel cell dry operation, start/stop cycle and gas diffusion layer (GDL) flooding are typical failure modes of fuel cells. After the modifications against the failure modes, the durability of FCSs is improved to over 3000 h step by step.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel cell system (FCS)     durability     failure mode     fuel cell vehicle (FCV)     carbon corrosion     water management    

A hybrid fuel cell for water purification and simultaneously electricity generation

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1611-6

摘要:

● A novel hybrid fuel cell (F-HFC) was fabricated.

关键词: Flow-through field     Hybrid fuel cell     Polyoxometalates     Water purification     Electricity generation    

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

《能源前沿(英文)》 2022年 第16卷 第5期   页码 852-861 doi: 10.1007/s11708-021-0811-7

摘要: Fuel starvation can occur and cause damage to the cell when proton exchange membrane fuel cells operate under complex working conditions. In this case, carbon corrosion occurs. Oxygen evolution reaction (OER) catalysts can alleviate carbon corrosion by introducing water electrolysis at a lower potential at the anode in fuel shortage. The mixture of hydrogen oxidation reaction (HOR) and unsupported OER catalyst not only reduces the electrolysis efficiency, but also influences the initial performance of the fuel cell. Herein, Ti4O7 supported IrOx is synthesized by utilizing the surfactant-assistant method and serves as reversal tolerant components in the anode. When the cell reverse time is less than 100 min, the cell voltage of the MEA added with IrOx/Ti4O7 has almost no attenuation. Besides, the MEA has a longer reversal time (530 min) than IrOx (75 min), showing an excellent reversal tolerance. The results of electron microscopy spectroscopy show that IrOx particles have a good dispersity on the surface of Ti4O7 and IrOx/Ti4O7 particles are uniformly dispersed on the anode catalytic layer. After the stability test, the Ti4O7 support has little decay, demonstrating a high electrochemical stability. IrOx/Ti4O7 with a high dispersity has a great potential to the application on the reversal tolerance anode of the fuel cell.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel starvation     cell reverse     reversal tolerance anode     oxygen evolution reaction    

Analysis on carbon emission reduction intensity of fuel cell vehicles from a life-cycle perspective

《能源前沿(英文)》 doi: 10.1007/s11708-023-0909-1

摘要: The hydrogen fuel cell vehicle is rapidly developing in China for carbon reduction and neutrality. This paper evaluated the life-cycle cost and carbon emission of hydrogen energy via lots of field surveys, including hydrogen production and packing in chlor-alkali plants, transport by tube trailers, storage and refueling in hydrogen refueling stations (HRSs), and application for use in two different cities. It also conducted a comparative study for battery electric vehicles (BEVs) and internal combustion engine vehicles (ICEVs). The result indicates that hydrogen fuel cell vehicle (FCV) has the best environmental performance but the highest energy cost. However, a sufficient hydrogen supply can significantly reduce the carbon intensity and FCV energy cost of the current system. The carbon emission for FCV application has the potential to decrease by 73.1% in City A and 43.8% in City B. It only takes 11.0%–20.1% of the BEV emission and 8.2%–9.8% of the ICEV emission. The cost of FCV driving can be reduced by 39.1% in City A. Further improvement can be obtained with an economical and “greener” hydrogen production pathway.

关键词: hydrogen energy     life-cycle assessment (LCA)     fuel cell vehicle     carbon emission     energy cost    

Significant potential of Solid Oxide Fuel Cell systems for distributed power generation and carbon neutrality

《能源前沿(英文)》 2022年 第16卷 第6期   页码 879-882 doi: 10.1007/s11708-022-0850-8

摘要: . {{custom_ra.content}} . . . {{article.highlightEn}} . . . {{article.abstractEn}} . . . {{article.authorSummayEn}} . . . . .

Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuelcell with direct internal reforming

Yuzhang WANG, Shilie WENG, Yiwu WENG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 195-206 doi: 10.1007/s11708-011-0148-8

摘要: A fully three-dimensional mathematical model of a planar solid oxide fuel cell (SOFC) with complete direct internal steam reforming was constructed to investigate the chemical and electrochemical characteristics of the porous-electrode-supported (PES)-SOFC developed by the Central Research Institute of Electric Power Industry of Japan. The effective kinetic models developed over the Ni/YSZ anode takes into account the heat transfer and species diffusion limitations in this porous anode. The models were used to simulate the methane steam reforming processes at the co- and counter-flow patterns. The results show that the flow patterns of gas and air have certain effects on cell performance. The cell at the counter-flow has a higher output voltage and output power density at the same operating conditions. At the counter-flow, however, a high hotspot temperature is observed in the anode with a non-fixed position, even when the air inlet flow rate is increased. This is disadvantageous to the cell. Both cell voltage and power density decrease with increased air flow rate.

关键词: planar solid oxide fuel cell (SOFC)     direct internal reforming     chemical reaction     methane     electrochemical    

Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode

Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第6期   页码 913-919 doi: 10.1007/s11783-013-0583-3

摘要: A scaled up microbial fuel cell (MFC) of a 50 L volume was set up with an oxic-anoxic two-stage biocathode and activated semicoke packed electrodes to achieve simultaneous power generation and nitrogen and organic matter removals. An average maximum power density of 43.1 W·m was obtained in batch operating mode. By adjusting the two external resistances, the denitrification in the A-MFC and power production in the O-MFC could be enhanced. In continuous mode, when the hydraulic retention times were set at 6 h, 8 h and 12 h, the removal efficiencies of COD, and total nitrogen (TN) were higher than 95%, 97%, and 84%, respectively. Meanwhile the removal loads for COD, and TN were10, 0.37 and 0.4 kg·(m ·d) , respectively.

关键词: microbial fuel cell (MFC)     oxic-anoxic two stage biocathode     denitrifying    

标题 作者 时间 类型 操作

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

期刊论文

A linear quadratic regulator control of a stand-alone PEM fuel cell power plant

Amar BENAISSA, Boualaga RABHI, Ammar MOUSSI, Dahmani AISSA

期刊论文

Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell

Tian TIAN, Jianjun TANG, Wei GUO, Mu PAN

期刊论文

Recent advances in cathode electrocatalysts for PEM fuel cells

Junliang ZHANG

期刊论文

Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

Gang WU

期刊论文

Effect of catalyst layer mesoscopic pore-morphology on cold start process of PEM fuel cells

Ahmed Mohmed DAFALLA, Fangming JIANG

期刊论文

Modeling nanostructured catalyst layer in PEMFC and catalyst utilization

Jiejing ZHANG, Pengzhen CAO, Li XU, Yuxin WANG

期刊论文

质子交换膜燃料电池的研究进展

任学佑

期刊论文

Failure mode investigation of fuel cell for vehicle application

Zhongjun HOU, Renfang WANG, Keyong WANG, Weiyu SHI, Danming XING, Hongchun JIANG

期刊论文

A hybrid fuel cell for water purification and simultaneously electricity generation

期刊论文

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

期刊论文

Analysis on carbon emission reduction intensity of fuel cell vehicles from a life-cycle perspective

期刊论文

Significant potential of Solid Oxide Fuel Cell systems for distributed power generation and carbon neutrality

期刊论文

Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuelcell with direct internal reforming

Yuzhang WANG, Shilie WENG, Yiwu WENG

期刊论文

Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode

Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG

期刊论文