资源类型

期刊论文 57

年份

2023 7

2022 7

2021 7

2020 3

2019 2

2018 7

2017 3

2016 1

2015 1

2014 4

2012 1

2011 3

2010 3

2009 1

2008 2

2007 1

2006 1

2001 2

2000 1

展开 ︾

关键词

热解 3

热裂解 2

ABS 1

APP 1

BDP 1

SiO2 1

催化改质 1

催化裂解 1

共热解 1

动力学参数 1

厌氧消化 1

原位热解 1

土地改良 1

土壤分解 1

城市固体废物 1

城市废水 1

废聚丙烯 1

微藻 1

木聚糖 1

展开 ︾

检索范围:

排序: 展示方式:

Thermodynamic analysis of reaction pathways and equilibrium yields for catalytic pyrolysis of naphtha

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1700-1712 doi: 10.1007/s11705-022-2207-6

摘要: The chain length and hydrocarbon type significantly affect the production of light olefins during the catalytic pyrolysis of naphtha. Herein, for a better catalyst design and operation parameters optimization, the reaction pathways and equilibrium yields for the catalytic pyrolysis of C5–8 n/iso/cyclo-paraffins were analyzed thermodynamically. The results revealed that the thermodynamically favorable reaction pathways for n/iso-paraffins and cyclo-paraffins were the protolytic and hydrogen transfer cracking pathways, respectively. However, the formation of light paraffin severely limits the maximum selectivity toward light olefins. The dehydrogenation cracking pathway of n/iso-paraffins and the protolytic cracking pathway of cyclo-paraffins demonstrated significantly improved selectivity for light olefins. The results are thus useful as a direction for future catalyst improvements, facilitating superior reaction pathways to enhance light olefins. In addition, the equilibrium yield of light olefins increased with increasing the chain length, and the introduction of cyclo-paraffin inhibits the formation of light olefins. High temperatures and low pressures favor the formation of ethylene, and moderate temperatures and low pressures favor the formation of propylene. n-Hexane and cyclohexane mixtures gave maximum ethylene and propylene yield of approximately 49.90% and 55.77%, respectively. This work provides theoretical guidance for the development of superior catalysts and the selection of proper operation parameters for the catalytic pyrolysis of C5–8 n/iso/cyclo-paraffins from a thermodynamic point of view.

关键词: naphtha     catalytic pyrolysis     reaction pathway     equilibrium yield    

Self-catalytic pyrolysis thermodynamics of waste printed circuit boards with co-existing metals

《环境科学与工程前沿(英文)》 2022年 第16卷 第11期 doi: 10.1007/s11783-022-1581-0

摘要:

● The co-existing metals in WPCBs has positive catalytic influence in pyrolysis.

关键词: Waste printed circuit board     Catalyst     Pyrolysis     Kinetics    

Co-pyrolysis of sludge and kaolin/zeolite in a rotary kiln: Analysis of stabilizing heavy metals

《环境科学与工程前沿(英文)》 2022年 第16卷 第7期 doi: 10.1007/s11783-021-1488-1

摘要:

• Adding kaolin/zeolite promotes the formation of stable heavy metals.

关键词: Co-pyrolysis     Sewage sludge     Heavy metals     Rotary kiln     Immobilization mechanism    

Theoretical study on the mechanism of sulfur migration to gas in the pyrolysis of benzothiophene

《化学科学与工程前沿(英文)》 2023年 第17卷 第3期   页码 334-346 doi: 10.1007/s11705-022-2209-4

摘要: The release and control of sulfur species in the pyrolysis of fossil fuels and solid wastes have attracted attention worldwide. Particularly, thiophene derivatives are important intermediates for the sulfur gas release from organic sulfur, but the underlying migration mechanisms remain unclear. Herein, the mechanism of sulfur migration during the release of sulfur-containing radicals in benzothiophene pyrolysis was explored through quantum chemistry modeling. The C1-to-C2 H-transfer has the lowest energy barrier of 269.9 kJ·mol–1 and the highest rate constant at low temperatures, while the elevated temperature is beneficial for C−S bond homolysis. 2-Ethynylbenzenethiol is the key intermediate for the formation of S and SH radicals with the overall energy barriers of 408.0 and 498.7 kJ·mol–1 in favorable pathways. The generation of CS radicals is relatively difficult because of the high energy barrier (551.8 kJ·mol–1). However, it can be significantly promoted by high temperatures, where the rate constant exceeds that for S radical generation above 930 °C. Consequently, the strong competitiveness of S and SH radicals results in abundant H2S during benzothiophene pyrolysis, and the high temperature is more beneficial for CS2 generation from CS radicals. This study lays a foundation for elucidating sulfur migration mechanisms and furthering the development of pyrolysis techniques.

关键词: benzothiophene     sulfur migration     pyrolysis     density functional theory    

Effect of / molecular structures on pyrolysis performance and heat sink of decalin isomers

《化学科学与工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11705-023-2375-z

摘要: Decalin is considered as an important compound of high-energy-density endothermic fuel, which is an ideal on-board coolant for thermal management of advanced aircraft. However, decalin contains two isomers with a tunable composition, and their effects on the pyrolysis performance, such as the heat sink and coking tendency have not been demonstrated. Herein, we investigated the pyrolysis of decalin isomers, i.e., cis-decalin, trans-decalin and their mixtures (denoted as mix-decalin), in order to clarify the effects of the cis-/trans-structures on the pyrolysis performance of decalin fuels. The pyrolysis results confirmed that conversion of the tested fuels (600–725 °C, 4 MPa) decreased in the order cis-decalin > mix-decalin > trans-decalin. Detailed analyses of the pyrolysis products were used to compare the product distributions from cis-decalin, mix-decalin and trans-decalin, and the yields of some typical components (such as cyclohexene, 1-methylcyclohexene, benzene and toluene) showed significant differences, which could be ascribed to deeper cracking of cis-decalin. Additionally, the heat sinks and coking tendencies of the decalins decreased in the order cis-decalin > mix-decalin > trans-decalin. This work demonstrates the relationship between the cis/trans structures and the pyrolysis performance of decalin, which provides a better understanding of the structure-activity relationships of endothermic hydrocarbon fuels.

关键词: endothermic fuel     decalin     pyrolysis     heat sink     molecular structure    

Fast and catalytic pyrolysis of xylan: Effects of temperature and M/HZSM-5 (M= Fe, Zn) catalysts on pyrolytic

Xifeng ZHU, Qiang LU, Wenzhi LI, Dong ZHANG,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 424-429 doi: 10.1007/s11708-010-0015-z

摘要: Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was employed to achieve fast pyrolysis of xylan and on-line analysis of pyrolysis vapors. Tests were conducted to investigate the effects of temperature on pyrolytic products, and to reveal the effect of HZSM-5 and M/HZSM-5 (M= Fe, Zn) zeolites on pyrolysis vapors. The results showed that the total yield of pyrolytic products first increased and then decreased with the increase of temperature from 350°C to 900°C. The pyrolytic products were complex, and the most abundant products included hydroxyacetaldehyde, acetic acid, 1-hydroxy-2-propanone, 1-hydroxy-2-butanone and furfural. Catalytic cracking of pyrolysis vapors with HZSM-5 and M/HZSM-5 (M= Fe, Zn) catalysts significantly altered the product distribution. Oxygen-containing compounds were reduced considerably, and meanwhile, a lot of hydrocarbons, mainly toluene and xylenes, were formed. M/HZSM-5 catalysts were more effective than HZSM-5 in reducing the oxygen-containing compounds, and therefore, they helped to produce higher contents of hydrocarbons than HZSM-5.

关键词: xylan     fast pyrolysis     catalytic pyrolysis     Py-GC/MS     HZSM-5    

Mechanism insight into the formation of HS from thiophene pyrolysis: A theoretical study

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1404-8

摘要:

• Possible formation pathways of H2S were revealed in thiophene pyrolysis.

关键词: Density functional theory     Waste rubber     Thiophene     H2S     Pyrolysis    

Co-pyrolysis of oil sludge with hydrogen-rich plastics in a vertical stirring reactor: Kinetic analysis

《环境科学与工程前沿(英文)》 2022年 第16卷 第10期 doi: 10.1007/s11783-022-1570-3

摘要:

● Collaborative treatment of plastics and OS was established to improve oil quality.

关键词: Oily sludge     Pyrolysis     Polyethylene     H/Ceff ratio     Oil quality    

Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs

Liaoyuan Mao, Yanxin Li, Z. Conrad Zhang

《化学科学与工程前沿(英文)》 2018年 第12卷 第1期   页码 50-58 doi: 10.1007/s11705-017-1685-4

摘要: A bubbling fluidized bed pyrolyzer was integrated with an honeycomb as a catalytic upgrading zone for the conversion of biomass to liquid fuels. In the upgrading zone, zeolite coated ceramic honeycomb (ZCCH) catalysts consisting of ZSM-5 (Si/Al=25) were stacked and N or recycled non-condensable gas was used as a carrier gas. Ground corncob particles were fast pyrolyzed in the bubbling bed using fine sand particles as a heat carrier and the resulting pyrolysis vapors were passed on-line over the catalytic upgrading zone. The influence of carrier gas, temperature, and weight hourly space velocity (WHSV) of catalyst on the oil product properties, distribution and mass balance were studied. Using ZCCH effectively increased the hydrocarbon yield and the heating value of the dry oil, especially in the presence of the recycled noncondensable gas. Even a low usage of zeolite catalyst at WSHV of 180 h was effective in upgrading the pyrolysis oil and other light olefins. The highest hydrocarbon (≥C2) and liquid aromatics yields reached to 14.23 and 4.17 wt-%, respectively. The undesirable products including light oxygenates, furans dramatically decreased in the presence of the ZCCH catalyst.

关键词: corncob     monolith     upgrading     pyrolysis    

Mass and heat balance calculations and economic evaluation of an innovative biomass pyrolysis project

Quanyuan WEI, Yongshui QU, Tianwei TAN

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 355-361 doi: 10.1007/s11705-010-0567-9

摘要: Biomass can be converted into flammable gas, charcoal, wood vinegar, wood tar oil and noncombustible materials with thermo-chemical pyrolysis reactions. Many factors influence these processes, such as the properties of the raw materials, and temperature control and these will affect the products that are produced. Based on the data from a straw pyrolysis demonstration project, the mass and heat balance of the biomass pyrolysis process were analyzed. The statistical product and service solutions (SPSS) statistical method was used to analyze the data which were monitored on-site. A cost-benefit analysis was then used to study the viability of commercializing the project. The analysis included net present value, internal rate of return and investment payback period. These results showed that the straw pyrolysis project has little risk, and will produce remarkable economic benefits.

关键词: mass balance     heat balance     biomass pyrolysis     economic benefit    

Prediction of high-density polyethylene pyrolysis using kinetic parameters based on thermogravimetric

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1606-3

摘要:

● Reducting the sampling frequency can enhance the modelling process.

关键词: HDPE     Pyrolysis     Kinetics     Thermogravimetric     ANOVA     Artificial neural network    

Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo

Songbo He, Jeffrey Boom, Rolf van der Gaast, K. Seshan

《化学科学与工程前沿(英文)》 2018年 第12卷 第1期   页码 155-161 doi: 10.1007/s11705-017-1655-x

摘要: In-line hydro-treatment of bio-oil vapor from fast pyrolysis of lignocellulosic biomass (hydro-pyrolysis of biomass) is studied as a method of upgrading the liquefied bio-oil for a possible precursor to green fuels. The nobel metal (Pt) and non-noble metal catalysts (Mo C and WC) were compared at 500 °C and atmospheric pressure which are same as the reaction conditions for fast pyrolysis of biomass. Results indicated that under the pyrolysis conditions, the major components, such as acids and carbonyls, of the fast pyrolysis bio-oil can be completely and partially hydrogenated to form hydrocarbons, an ideal fossil fuel blend, in the hydro-treated bio-oil. The carbide catalysts perform equally well as the Pt catalyst regarding to the aliphatic and aromatic hydrocarbon formation (ca. 60%), showing the feasibility of using the cheap non-noble catalysts for hydro-pyrolysis of biomass.

关键词: bio-oil     pyrolysis     hydro-deoxygenation (HDO)     non-noble metal catalysts     hydro-treatment    

A review on co-pyrolysis of coal and oil shale to produce coke

Xiangchun Liu, Ping Cui, Qiang Ling, Zhigang Zhao, Ruilun Xie

《化学科学与工程前沿(英文)》 2020年 第14卷 第4期   页码 504-512 doi: 10.1007/s11705-019-1850-z

摘要: It has become the top priority for coking industry to rationally use and enlarge coking coal resources because of the shortage of the resources. This review focuses on the potential utilization of oil shale (OS) as a feedstock for coal-blending coking, in which the initial and basic step is pyrolysis. However, OS has a high ash content. If such OS is directly used for coal-blending coking, the coke product will not meet market demand. Therefore, this review firstly summarizes separation and beneficiation techniques for organic matter in OS, and provides an overview on coal and OS pyrolysis through several viewpoints (e.g., pyrolysis process, phenomena, and products). Then the exploratory studies on co-pyrolysis of coal with OS, including co-pyrolysis phenomena and process mechanism, are discussed. Finally, co-pyrolysis of different ranks of coals with OS in terms of coal-blending coking, where further research deserves to be performed, is suggested.

关键词: coal     oil shale     co-pyrolysis     coal blending coking     coke    

Nanostructure and reactivity of soot from biofuel 2,5-dimethylfuran pyrolysis with CO

Lijie ZHANG, Kaixuan YANG, Rui ZHAO, Mingfei CHEN, Yaoyao YING, Dong LIU

《能源前沿(英文)》 2022年 第16卷 第2期   页码 292-306 doi: 10.1007/s11708-020-0658-3

摘要: This paper investigated the nanostructure and oxidation reactivity of soot generated from biofuel 2,5-dimethylfuran pyrolysis with different CO additions and different temperatures in a quartz tube flow reactor. The morphology and nanostructure of soot samples were characterized by a low and a high resolution transmission electron spectroscopy (TEM and HRTEM) and an X-ray diffraction (XRD). The oxidation reactivity of these samples was explored by a thermogravimetric analyzer (TGA). Different soot samples were collected in the tail of the tube. With the increase of temperature, the soot showed a smaller mean particle diameter, a longer fringe length, and a lower fringe tortuosity, as well as a higher degree of graphization. However, the variation of soot nanostructures resulting from different CO additions was not linear. Compared with 0%, 50%, and 100% CO additions at one fixed temperature, the soot collected from the 10% CO addition has the highest degree of graphization and crystallization. At three temperatures of 1173 K, 1223 K, and 1273 K, the mean values of fringe length distribution displayed a ranking of 10% CO >100% CO >50% CO while the mean particle diameters showed the same order. Furthermore, the oxidation reactivity of different soot samples decreased in the ranking of 50% CO addition>100% CO addition>10% CO addition, which was equal to the ranking of mean values of fringe tortuosity distribution. The result further confirmed the close relationship between soot nanostructure and oxidation reactivity.

关键词: 2     5-dimethylfuran pyrolysis     soot     CO2 addition     nanostructure     reactivity    

Particle formation of hydroxyapatite precursor containing two components in a spray pyrolysis process

W. Widiyastuti, Adhi Setiawan, Sugeng Winardi, Tantular Nurtono, Heru Setyawan

《化学科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 104-113 doi: 10.1007/s11705-014-1406-1

摘要: The particle formation mechanism of hydroxyapatite precursor containing two components, Ca(OOCCH ) and (NH ) HPO with a ratio of Ca/P= 1.67, in a spray pyrolysis process has been studied by computational fluid dynamics (CFD) simulation on the transfer of heat and mass from droplets to the surrounding media. The focus included the evaporation of the solvent in the droplets, a second evaporation due to crust formation, the decomposition reaction of each component of the precursor, and a solid-state reaction that included the kinetic parameters of the precursor regarding its two components that formed the hydroxyapatite product. The rate of evaporation and the reacted fraction of the precursor both increased with temperature. The predicted average size of the hydroxyapatite particles agreed well with the experimental results. Therefore, the selected models were also suitable for predicting the average size of particles that contain two components in the precursor solution.

关键词: droplet     hydroxyapatite particle     CFD     tubular furnace     spray pyrolysis    

标题 作者 时间 类型 操作

Thermodynamic analysis of reaction pathways and equilibrium yields for catalytic pyrolysis of naphtha

期刊论文

Self-catalytic pyrolysis thermodynamics of waste printed circuit boards with co-existing metals

期刊论文

Co-pyrolysis of sludge and kaolin/zeolite in a rotary kiln: Analysis of stabilizing heavy metals

期刊论文

Theoretical study on the mechanism of sulfur migration to gas in the pyrolysis of benzothiophene

期刊论文

Effect of / molecular structures on pyrolysis performance and heat sink of decalin isomers

期刊论文

Fast and catalytic pyrolysis of xylan: Effects of temperature and M/HZSM-5 (M= Fe, Zn) catalysts on pyrolytic

Xifeng ZHU, Qiang LU, Wenzhi LI, Dong ZHANG,

期刊论文

Mechanism insight into the formation of HS from thiophene pyrolysis: A theoretical study

期刊论文

Co-pyrolysis of oil sludge with hydrogen-rich plastics in a vertical stirring reactor: Kinetic analysis

期刊论文

Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs

Liaoyuan Mao, Yanxin Li, Z. Conrad Zhang

期刊论文

Mass and heat balance calculations and economic evaluation of an innovative biomass pyrolysis project

Quanyuan WEI, Yongshui QU, Tianwei TAN

期刊论文

Prediction of high-density polyethylene pyrolysis using kinetic parameters based on thermogravimetric

期刊论文

Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo

Songbo He, Jeffrey Boom, Rolf van der Gaast, K. Seshan

期刊论文

A review on co-pyrolysis of coal and oil shale to produce coke

Xiangchun Liu, Ping Cui, Qiang Ling, Zhigang Zhao, Ruilun Xie

期刊论文

Nanostructure and reactivity of soot from biofuel 2,5-dimethylfuran pyrolysis with CO

Lijie ZHANG, Kaixuan YANG, Rui ZHAO, Mingfei CHEN, Yaoyao YING, Dong LIU

期刊论文

Particle formation of hydroxyapatite precursor containing two components in a spray pyrolysis process

W. Widiyastuti, Adhi Setiawan, Sugeng Winardi, Tantular Nurtono, Heru Setyawan

期刊论文