资源类型

期刊论文 199

年份

2024 1

2023 14

2022 21

2021 16

2020 17

2019 10

2018 8

2017 11

2016 9

2015 8

2014 4

2013 9

2012 6

2011 13

2010 11

2009 9

2008 4

2007 8

2006 2

2005 2

展开 ︾

关键词

动力学 4

系统动力学 3

COVID-19 2

岩石动力学 2

弹射座椅 2

航天器 2

Tetrasphaera 1

Fitzhugh-Nagumo;混沌;分数阶;磁通量 1

GPS轨迹 1

Hilare 机器人 1

NNI 1

SEIHR动力学模型 1

SEIR+Q传染病动力学模型 1

SPH 1

Spark 1

UNI 1

一般力学 1

上限法 1

下肢外骨骼机器人;人机交互;运动学习;轨迹生成;运动基元;黑盒优化 1

展开 ︾

检索范围:

排序: 展示方式:

基于车辆动力学的轨迹跟踪器设计

陈杨,刘大学,贺汉根,戴斌

《中国工程科学》 2007年 第9卷 第11期   页码 68-73

摘要:

轨迹跟踪是移动机器人导航中的核心问题之一。针对非完整运动约束车辆,利用反馈线性化方法设计了轨迹跟踪器,仿真研究了跟踪算法的鲁棒性。最后,介绍了工程实现中参数观测器设计等相关问题。

关键词: 轨迹跟踪     反馈线性化     导航    

一种基于轨迹动力学的任务导向型飞行自组网赛博物理路由协议 Article

胡蝶, 杨少石, 龚旻, 冯志勇, 祝学军

《工程(英文)》 2022年 第19卷 第12期   页码 217-227 doi: 10.1016/j.eng.2021.10.022

摘要:

作为一种特殊的移动自组网(MANET),飞行自组网(FANET)具有在民用无线通信(如5G和6G)和国防工业中使能各种新兴应用的潜力。路由协议在FANET中起着关键作用。但是,在为FANET设计路由协议时,通常假设空中节点随机移动。这对于以任务为导向的FANET(MO-FANET)显然是不合适的。在该网络中,空中节点为了执行某些任务,通常保持良好的编队构型,沿着大致确定的飞行路径从给定的出发点向确定的目标点移动。本文提出了一种基于跨学科集成的新型赛博物理路由协议,基于MOFANET的特定移动模式,充分利用由任务决定的轨迹动力学模型,构建节点重新加入网络和互相分离的时间序列,并将其与每个节点的邻接矩阵一起作为先验信息。通过大量符合真实情况的NS-3 仿真试验,结果表明,与FANET中使用的现有代表性路由协议相比,本文提出的协议在保证更低的开销和更低的平均端到端延迟的同时,保持了相对适度和稳定的网络时延抖动,并实现了更高的数据包传输率(PDR)

关键词: 信息物理系统     飞行自组网     路由协议     轨迹动力学     无人机    

Multiobjective trajectory optimization of intelligent electro-hydraulic shovel

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0706-2

摘要: Multiobjective trajectory planning is still face challenges due to certain practical requirements and multiple contradicting objectives optimized simultaneously. In this paper, a multiobjective trajectory optimization approach that sets energy consumption, execution time, and excavation volume as the objective functions is presented for the electro-hydraulic shovel (EHS). The proposed cubic polynomial S-curve is employed to plan the crowd and hoist speed of EHS. Then, a novel hybrid constrained multiobjective evolutionary algorithm based on decomposition is proposed to deal with this constrained multiobjective optimization problem. The normalization of objectives is introduced to minimize the unfavorable effect of orders of magnitude. A novel hybrid constraint handling approach based on -constraint and the adaptive penalty function method is utilized to discover infeasible solution information and improve population diversity. Finally, the entropy weight technique for order preference by similarity to an ideal solution method is used to select the most satisfied solution from the Pareto optimal set. The performance of the proposed strategy is validated and analyzed by a series of simulation and experimental studies. Results show that the proposed approach can provide the high-quality Pareto optimal solutions and outperforms other trajectory optimization schemes investigated in this article.

关键词: trajectory planning     electro-hydraulic shovel     cubic polynomial S-curve     multiobjective optimization     entropy weight technique    

Dynamic prediction of moving trajectory in pipe jacking: GRU-based deep learning framework

《结构与土木工程前沿(英文)》   页码 994-1010 doi: 10.1007/s11709-023-0942-5

摘要: The moving trajectory of the pipe-jacking machine (PJM), which primarily determines the end quality of jacked tunnels, must be controlled strictly during the entire jacking process. Developing prediction models to support drivers in performing rectifications in advance can effectively avoid considerable trajectory deviations from the designed jacking axis. Hence, a gated recurrent unit (GRU)-based deep learning framework is proposed herein to dynamically predict the moving trajectory of the PJM. In this framework, operational data are first extracted from a data acquisition system; subsequently, they are preprocessed and used to establish GRU-based multivariate multistep-ahead direct prediction models. To verify the performance of the proposed framework, a case study of a large pipe-jacking project in Shanghai and comparisons with other conventional models (i.e., long short-term memory (LSTM) network and recurrent neural network (RNN)) are conducted. In addition, the effects of the activation function and input time-step length on the prediction performance of the proposed framework are investigated and discussed. The results show that the proposed framework can dynamically and precisely predict the PJM moving trajectory during the pipe-jacking process, with a minimum mean absolute error and root mean squared error (RMSE) of 0.1904 and 0.5011 mm, respectively. The RMSE of the GRU-based models is lower than those of the LSTM- and RNN-based models by 21.46% and 46.40% at the maximum, respectively. The proposed framework is expected to provide an effective decision support for moving trajectory control and serve as a foundation for the application of deep learning in the automatic control of pipe jacking.

关键词: dynamic prediction     moving trajectory     pipe jacking     GRU     deep learning    

Research on Anthropomorphic Obstacle Avoidance Trajectory Planning for Adaptive Driving Scenarios Based

Jian Wu,Yang Yan,Yulong Liu,Yahui Liu,

《工程(英文)》 doi: 10.1016/j.eng.2023.07.018

摘要: The forward design of trajectory planning strategies requires preset trajectory optimization functions, resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits. In addition, owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios, it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters. Therefore, an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed. First, numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset. Subsequently, a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory. Furthermore, a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function, and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed. Finally, the proposed strategy is verified based on real driving scenarios. The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the “emergency degree” of obstacle avoidance and the state of the vehicle. Moreover, this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories, effectively improving the adaptability and acceptability of trajectories in driving scenarios.

关键词: Obstacle avoidance trajectory planning     Inverse reinforcement theory     Anthropomorphic     Adaptive driving scenarios    

Robust train speed trajectory optimization: A stochastic constrained shortest path approach

Li WANG, Lixing YANG, Ziyou GAO, Yeran HUANG

《工程管理前沿(英文)》 2017年 第4卷 第4期   页码 408-417 doi: 10.15302/J-FEM-2017042

摘要: Train speed trajectory optimization is a significant issue in railway traffic systems, and it plays a key role in determining energy consumption and travel time of trains. Due to the complexity of real-world operational environments, a variety of factors can lead to the uncertainty in energy-consumption. To appropriately characterize the uncertainties and generate a robust speed trajectory, this study specifically proposes distance-speed networks over the inter-station and treats the uncertainty with respect to energy consumption as discrete sample-based random variables with correlation. The problem of interest is formulated as a stochastic constrained shortest path problem with travel time threshold constraints in which the expected total energy consumption is treated as the evaluation index. To generate an approximate optimal solution, a Lagrangian relaxation algorithm combined with dynamic programming algorithm is proposed to solve the optimal solutions. Numerical examples are implemented and analyzed to demonstrate the performance of proposed approaches.

关键词: train speed trajectory optimization     railway operation     stochastic programming    

autonomous mining: design and development of an unmanned electric shovel via point cloud-based optimal trajectory

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0686-2

摘要: With the proposal of intelligent mines, unmanned mining has become a research hotspot in recent years. In the field of autonomous excavation, environmental perception and excavation trajectory planning are two key issues because they have considerable influences on operation performance. In this study, an unmanned electric shovel (UES) is developed, and key robotization processes consisting of environment modeling and optimal excavation trajectory planning are presented. Initially, the point cloud of the material surface is collected and reconstructed by polynomial response surface (PRS) method. Then, by establishing the dynamical model of the UES, a point to point (PTP) excavation trajectory planning method is developed to improve both the mining efficiency and fill factor and to reduce the energy consumption. Based on optimal trajectory command, the UES performs autonomous excavation. The experimental results show that the proposed surface reconstruction method can accurately represent the material surface. On the basis of reconstructed surface, the PTP trajectory planning method rapidly obtains a reasonable mining trajectory with high fill factor and mining efficiency. Compared with the common excavation trajectory planning approaches, the proposed method tends to be more capable in terms of mining time and energy consumption, ensuring high-performance excavation of the UES in practical mining environment.

关键词: autonomous excavation     unmanned electric shovel     point cloud     excavation trajectory planning    

General Optimal Trajectory Planning: Enabling Autonomous Vehicles with the Principle of Least Action

Heye Huang,Yicong Liu,Jinxin Liu,Qisong Yang,Jianqiang Wang,David Abbink,Arkady Zgonnikov,

《工程(英文)》 doi: 10.1016/j.eng.2023.10.001

摘要: This study presents a general optimal trajectory planning (GOTP) framework for autonomous vehicles (AVs) that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently. Firstly, we employ the fifth-order Bezier curve to generate and smooth the reference path along the road centerline. Cartesian coordinates are then transformed to achieve the curvature continuity of the generated curve. Considering the road constraints and vehicle dynamics, limited polynomial candidate trajectories are generated and smoothed in a curvilinear coordinate system. Furthermore, in selecting the optimal trajectory, we develop a unified and auto-tune objective function based on the principle of least action by employing AVs to simulate drivers’ behavior and summarizing their manipulation characteristics of “seeking benefits and avoiding losses.” Finally, by integrating the idea of receding-horizon optimization, the proposed framework is achieved by considering dynamic multi-performance objectives and selecting trajectories that satisfy feasibility, optimality, and adaptability. Extensive simulations and experiments are performed, and the results demonstrate the framework’s feasibility and effectiveness, which avoids both dynamic and static obstacles and applies to various scenarios with multi-source interactive traffic participants. Moreover, we prove that the proposed method can guarantee real-time planning and safety requirements compared to drivers’ manipulation.

关键词: Autonomous vehicle     Trajectory planning     Multi-performance objectives     Principle of least action    

Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking

Hamza KHAN,Jamshed IQBAL,Khelifa BAIZID,Teresa ZIELINSKA

《信息与电子工程前沿(英文)》 2015年 第16卷 第2期   页码 166-172 doi: 10.1631/FITEE.1400183

摘要: This research formulates a path-following control problem subjected to wheel slippage and skid and solves it using a logic-based control scheme for a wheeled mobile robot (WMR). The novelty of the proposed scheme lies in its methodology that considers both longitudinal and lateral slip components. Based on the derived slip model, the controller for longitudinal motion slip has been synthesized. Various control parameters have been studied to investigate their effects on the performance of the controller resulting in selection of their optimum values. The designed controller for lateral slip or skid is based on the proposed side friction model and skid check condition. Considering a car-like WMR, simulation results demonstrate the effectiveness of the proposed control scheme. The robot successfully followed the desired circular trajectory in the presence of wheel slippage and skid. This research finds its potential in various applications involving WMR navigation and control.

关键词: Robot modeling     Robot navigation     Slip and skid control     Wheeled mobile robots    

Real-time immune-inspired optimum state-of-charge trajectory estimation using upcoming route information

Ahmad MOZAFFARI,Mahyar VAJEDI,Nasser L. AZAD

《机械工程前沿(英文)》 2015年 第10卷 第2期   页码 154-167 doi: 10.1007/s11465-015-0336-z

摘要:

The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categorizing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomie software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs.

关键词: trip information preview     intelligent transportation     state-of-charge trajectory builder     immune systems     artificial neural network    

Trajectory planning of mobile robots using indirect solution of optimal control method in generalized

M. NAZEMIZADEH, H. N. RAHIMI, K. AMINI KHOIY

《机械工程前沿(英文)》 2012年 第7卷 第1期   页码 23-28 doi: 10.1007/s11465-012-0304-9

摘要:

This paper presents an optimal control strategy for optimal trajectory planning of mobile robots by considering nonlinear dynamic model and nonholonomic constraints of the system. The nonholonomic constraints of the system are introduced by a nonintegrable set of differential equations which represent kinematic restriction on the motion. The Lagrange’s principle is employed to derive the nonlinear equations of the system. Then, the optimal path planning of the mobile robot is formulated as an optimal control problem. To set up the problem, the nonlinear equations of the system are assumed as constraints, and a minimum energy objective function is defined. To solve the problem, an indirect solution of the optimal control method is employed, and conditions of the optimality derived as a set of coupled nonlinear differential equations. The optimality equations are solved numerically, and various simulations are performed for a nonholonomic mobile robot to illustrate effectiveness of the proposed method.

关键词: mobile robot     trajectory planning     nonlinear dynamic     optimal control    

Computational fluid dynamics simulation of aerosol transport and deposition

Yingjie TANG, Bing GUO

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 362-377 doi: 10.1007/s11783-011-0365-8

摘要: In this article computational fluid dynamics (CFD) simulation of aerosol transport and deposition, i.e. the transport and deposition of particles in an aerosol, is reviewed. The review gives a brief account of the basics of aerosol mechanics, followed by a description of the general CFD approach for flow field simulation, turbulence modeling, wall treatments and simulation of particle motion and deposition. Then examples from the literature are presented, including CFD simulation of particle deposition in human respiratory tract and particle deposition in aerosol devices. CFD simulation of particle transport and deposition may provide information that is difficult to obtain through physical experiments, and it may help reduce the number of experiments needed for device design. Due to the difficulty of describing turbulent flow and particle-eddy interaction, turbulent dispersion of particles remains one of the greatest challenges for CFD simulation. However, it is possible to take a balanced approach toward quantitative description of aerosol dispersion using CFD simulation in conjunction with empirical relations.

关键词: computational fluid dynamics (CFD)     aerosol     transport     deposition    

Recent developments in passive interconnected vehicle suspension

Wade A. SMITH, Nong ZHANG,

《机械工程前沿(英文)》 2010年 第5卷 第1期   页码 1-18 doi: 10.1007/s11465-009-0092-z

摘要: This paper presents an overall review on the historical concept development and research advancement of passive hydraulically interconnected suspension (HIS) systems. It starts with an introduction to passive HIS systems and their various incarnations developed over many decades. Next, a description is provided of a recently proposed multidisciplinary approach for the frequency-domain analysis of vehicles fitted with an HIS. The experimental validation and applications of the method to both free and forced vibration analysis are discussed based on a simplified, roll-plane half-car model. A finite-element-method-based approddach for modelling the transient dynamics of an HIS vehicle is also briefly outlined. In addition, recent work on the investigation of NVH associated with HIS-equipped vehicles is mentioned. Discussion is then provided on future work to the further understanding of HIS and its applications. The paper concludes that interconnected suspension schemes can provide much greater flexibility to independently specify modal stiffness and damping parameters – a characteristic unique among passive suspensions. It points out that there is a need for system optimisation, and there are troublesome NVH issues that require solutions. It suggests that further research attention and effort be paid to NVH issues and system level optimisation to gain a greater understanding of HIS and to broaden its applications.

关键词: interconnected suspensions     rollover prevention     vehicle dynamics     ride comfort     multibody system dynamics     hydraulic system dynamics    

Nonlinear dynamics of a wind turbine tower

A. GESUALDO, A. IANNUZZO, F. PENTA, M. MONACO

《机械工程前沿(英文)》 2019年 第14卷 第3期   页码 342-350 doi: 10.1007/s11465-019-0524-3

摘要: The recent proliferation of wind turbines has revealed problems in their vulnerability under different site conditions, as evidenced by recent collapses of wind towers after severe actions. Analyses of structures subjected to variable actions can be conducted through several methods with different accuracy levels. Nonlinear dynamics is the most reliable among such methods. This study develops a numerical procedure to obtain approximate solutions for rigid-plastic responses of structures subjected to base harmonic pulses. The procedure’s model is applied to a wind turbine tower subjected to inertial forces generated by harmonic ground acceleration, and failure is assumed to depend on the formation of shear hinges. The proposed approach provides an efficient representation of the post-elastic behavior of the structure, has a low computational cost and high effectiveness, and uses a limited number of mechanical parameters.

关键词: nonlinear dynamics     plastic shear failure     modal approximation     time history    

Energy-efficient trajectory planning for a multi-UAV-assisted mobile edge computing system

Pei-qiu Huang, Yong Wang, Ke-zhi Wang,pqhuang@csu.edu.cn,ywang@csu.edu.cn,kezhi.wang@northumbria.ac.uk

《信息与电子工程前沿(英文)》 2020年 第21卷 第12期   页码 1671-1814 doi: 10.1631/FITEE.2000315

摘要: We study a system assisted by (UAVs), where the UAVs act as edge servers to provide computing services for Internet of Things devices. Our goal is to minimize the energy consumption of this system by planning the trajectories of UAVs. This problem is difficult to address because when planning the trajectories, we need to consider not only the order of stop points (SPs), but also their deployment (including the number and locations) and the association between UAVs and SPs. To tackle this problem, we present an energy-efficient algorithm (TPA) which comprises three phases. In the first phase, a algorithm with a variable population size is adopted to update the number and locations of SPs at the same time. In the second phase, the

标题 作者 时间 类型 操作

基于车辆动力学的轨迹跟踪器设计

陈杨,刘大学,贺汉根,戴斌

期刊论文

一种基于轨迹动力学的任务导向型飞行自组网赛博物理路由协议

胡蝶, 杨少石, 龚旻, 冯志勇, 祝学军

期刊论文

Multiobjective trajectory optimization of intelligent electro-hydraulic shovel

期刊论文

Dynamic prediction of moving trajectory in pipe jacking: GRU-based deep learning framework

期刊论文

Research on Anthropomorphic Obstacle Avoidance Trajectory Planning for Adaptive Driving Scenarios Based

Jian Wu,Yang Yan,Yulong Liu,Yahui Liu,

期刊论文

Robust train speed trajectory optimization: A stochastic constrained shortest path approach

Li WANG, Lixing YANG, Ziyou GAO, Yeran HUANG

期刊论文

autonomous mining: design and development of an unmanned electric shovel via point cloud-based optimal trajectory

期刊论文

General Optimal Trajectory Planning: Enabling Autonomous Vehicles with the Principle of Least Action

Heye Huang,Yicong Liu,Jinxin Liu,Qisong Yang,Jianqiang Wang,David Abbink,Arkady Zgonnikov,

期刊论文

Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking

Hamza KHAN,Jamshed IQBAL,Khelifa BAIZID,Teresa ZIELINSKA

期刊论文

Real-time immune-inspired optimum state-of-charge trajectory estimation using upcoming route information

Ahmad MOZAFFARI,Mahyar VAJEDI,Nasser L. AZAD

期刊论文

Trajectory planning of mobile robots using indirect solution of optimal control method in generalized

M. NAZEMIZADEH, H. N. RAHIMI, K. AMINI KHOIY

期刊论文

Computational fluid dynamics simulation of aerosol transport and deposition

Yingjie TANG, Bing GUO

期刊论文

Recent developments in passive interconnected vehicle suspension

Wade A. SMITH, Nong ZHANG,

期刊论文

Nonlinear dynamics of a wind turbine tower

A. GESUALDO, A. IANNUZZO, F. PENTA, M. MONACO

期刊论文

Energy-efficient trajectory planning for a multi-UAV-assisted mobile edge computing system

Pei-qiu Huang, Yong Wang, Ke-zhi Wang,pqhuang@csu.edu.cn,ywang@csu.edu.cn,kezhi.wang@northumbria.ac.uk

期刊论文