资源类型

期刊论文 74

会议视频 7

年份

2024 1

2023 6

2022 3

2021 12

2020 14

2019 9

2018 6

2017 11

2016 1

2015 6

2013 3

2012 2

2011 1

2010 1

2009 1

2008 1

2007 1

2006 1

2000 1

展开 ︾

关键词

增材制造 30

3D打印 8

智能制造 4

4D打印 3

医学 3

形状记忆聚合物 2

微观结构 2

拓扑优化 2

添加剂 2

灭火性能 2

生物打印 2

电子束 2

组织工程 2

选择性激光熔化 2

2D增材制造 1

3D生物打印 1

Inconel 718合金 1

Rosenthal方程 1

产业化 1

展开 ︾

检索范围:

排序: 展示方式:

喷气发动机部件的增材设计与制造

韩品连

《工程(英文)》 2017年 第3卷 第5期   页码 648-652 doi: 10.1016/J.ENG.2017.05.017

摘要:

喷气发动机部件的增材设计(AD)和增材制造(AM)将彻底改变传统的航空航天工业。增材设计的独特性开创了喷气发动机设计和制造的新方向,比如梯度材料和微观结构。工程师已经从传统方法和技术的诸多限制中解放出来。增材制造过程最重要的特征之一是其可以确保零件的一致性,因为它始于点,继而到线和层面,直至整个部件完成。设计和制造之间的协调是空气动力学、热力学、结构整合、传热、材料开发和加工等方面取得成功的关键。工程师必须改变设计零件的方式,因为他们要从传统的“减材”方法转移到“增材”的新方法来制造零件。增材设计与增材制造设计不一样。我们需要一种新方法和新工具来协助这种新的设计和制方式。本文详细讨论了增材设计与增材制造中的需求,以及如何解决当前的问题。

关键词: 增材制造     增材设计     喷气发动机     多孔结构    

Compressive behavior and energy absorption of polymeric lattice structures made by additive manufacturing

Sheng WANG, Jun WANG, Yingjie XU, Weihong ZHANG, Jihong ZHU

《机械工程前沿(英文)》 2020年 第15卷 第2期   页码 319-327 doi: 10.1007/s11465-019-0549-7

摘要: Lattice structures have numerous outstanding characteristics, such as light weight, high strength, excellent shock resistance, and highly efficient heat dissipation. In this work, by combining experimental and numerical methods, we investigate the compressive behavior and energy absorption of lattices made through the stereolithography apparatus process. Four types of lattice structures are considered: (i) Uniform body-centered-cubic (U-BCC); (ii) graded body-centered-cubic (G-BCC); (iii) uniform body-centered-cubic with -axis reinforcement (U-BCCz); and (iv) graded body-centered-cubic with -axis reinforcement (G-BCCz). We conduct compressive tests on these four lattices and numerically simulate the compression process through the finite element method. Analysis results show that BCCz has higher modulus and strength than BCC. In addition, uniform lattices show better energy absorption capabilities at small compression distances, while graded lattices absorb more energy at large compression distances. The good correlation between the simulation results and the experimental phenomena demonstrates the validity and accuracy of the present investigation method.

关键词: lattice structure     polymer     compressive behavior     additive manufacturing     simulation    

Topology optimization based on reduction methods with applications to multiscale design and additive

Emmanuel TROMME, Atsushi KAWAMOTO, James K. GUEST

《机械工程前沿(英文)》 2020年 第15卷 第1期   页码 151-165 doi: 10.1007/s11465-019-0564-8

摘要: Advanced manufacturing processes such as additive manufacturing offer now the capability to control material placement at unprecedented length scales and thereby dramatically open up the design space. This includes the considerations of new component topologies as well as the architecture of material within a topology offering new paths to creating lighter and more efficient structures. Topology optimization is an ideal tool for navigating this multiscale design problem and leveraging the capabilities of advanced manufacturing technologies. However, the resulting design problem is computationally challenging as very fine discretizations are needed to capture all micro-structural details. In this paper, a method based on reduction techniques is proposed to perform efficiently topology optimization at multiple scales. This method solves the design problem without length scale separation, i.e., without iterating between the two scales. Ergo, connectivity between space-varying micro-structures is naturally ensured. Several design problems for various types of micro-structural periodicity are performed to illustrate the method, including applications to infill patterns in additive manufacturing.

关键词: multiscale topology optimization     micro-structure     additive manufacturing     reduction techniques     substructuring     static condensation     super-element    

Surface accuracy optimization of mechanical parts with multiple circular holes for additive manufacturing

Jinghua XU, Hongsheng SHENG, Shuyou ZHANG, Jianrong TAN, Jinlian DENG

《机械工程前沿(英文)》 2021年 第16卷 第1期   页码 133-150 doi: 10.1007/s11465-020-0610-6

摘要: Surface accuracy directly affects the surface quality and performance of mechanical parts. Circular hole, especially spatial non-planar hole set is the typical feature and working surface of mechanical parts. Compared with traditional machining methods, additive manufacturing (AM) technology can decrease the surface accuracy errors of circular holes during fabrication. However, an accuracy error may still exist on the surface of circular holes fabricated by AM due to the influence of staircase effect. This study proposes a surface accuracy optimization approach for mechanical parts with multiple circular holes for AM based on triangular fuzzy number (TFN). First, the feature lines on the manifold mesh are extracted using the dihedral angle method and normal tensor voting to detect the circular holes. Second, the optimal AM part build orientation is determined using the genetic algorithm to optimize the surface accuracy of the circular holes by minimizing the weighted volumetric error of the part. Third, the corresponding weights of the circular holes are calculated with the TFN analytic hierarchy process in accordance with the surface accuracy requirements. Lastly, an improved adaptive slicing algorithm is utilized to reduce the entire build time while maintaining the forming surface accuracy of the circular holes using digital twins via virtual printing. The effectiveness of the proposed approach is experimentally validated using two mechanical models.

关键词: surface accuracy optimization     multiple circular holes     additive manufacturing (AM)     part build orientation     triangular fuzzy number (TFN)     digital twins    

Manufacturing cost constrained topology optimization for additive manufacturing

Jikai LIU, Qian CHEN, Xuan LIANG, Albert C. TO

《机械工程前沿(英文)》 2019年 第14卷 第2期   页码 213-221 doi: 10.1007/s11465-019-0536-z

摘要: This paper presents a manufacturing cost constrained topology optimization algorithm considering the laser powder bed additive manufacturing process. Topology optimization for additive manufacturing was recently extensively studied, and many related topics have been addressed. However, metal additive manufacturing is an expensive process, and the high manufacturing cost severely hinders the widespread use of this technology. Therefore, the proposed algorithm in this research would provide an opportunity to balance the manufacturing cost while pursuing the superior structural performance through topology optimization. Technically, the additive manufacturing cost model for laser powder bed-based process is established in this paper and real data is collected to support this model. Then, this cost model is transformed into a level set function-based expression, which is integrated into the level set topology optimization problem as a constraint. Therefore, by properly developing the sensitivity result, the metallic additive manufacturing part can be optimized with strictly constrained manufacturing cost. Effectiveness of the proposed algorithm is proved by numerical design examples.

关键词: topology optimization     manufacturing cost     additive manufacturing     powder bed    

Enhancing thermostability of -mannanase by protective additives

LIU Zhaohui, QI Wei, WU Weina, LIU Yue, HE Zhimin

《化学科学与工程前沿(英文)》 2008年 第2卷 第4期   页码 439-442 doi: 10.1007/s11705-008-0062-8

摘要: The effects of some sugars (glucose, mannose, fructose, sucrose and chitosan) and polyols (glycol, glycerol and sorbitol) as protective additive on the thermostability of -mannanase were studied. The optimal reaction temperatures of -mannanase and the thermodynamics and the deactivation kinetics with or without additives were also investigated. The experimental results show that sucrose, chitosan and sorbitol could apparently improve the thermal stability of -mannanase when their concentration was kept at 2 g/L. The optimal combination additive proportion was sucrose: chitosan : sorbitol = 1 : 2 : 2 (molar ratio) using the orthogonal experimental design. The sucrose, chitosan, glycerol, sorbitol and the combination additive might increase the optimal reaction temperature from 50°C to about 60°C due to their good protection effect. The thermal deactivation curves of -mannanase accorded with the kinetic rules of first order reaction, and the corresponding kinetic and thermodynamic parameters were calculated. Meanwhile, the protective mechanism of the additives against deactivation of enzyme was also discussed.

关键词: protective additive     g/L     orthogonal experimental     combination additive     corresponding    

Process development for green part printing using binder jetting additive manufacturing

Hadi MIYANAJI, Morgan ORTH, Junaid Muhammad AKBAR, Li YANG

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 504-512 doi: 10.1007/s11465-018-0508-8

摘要:

Originally developed decades ago, the binder jetting additive manufacturing (BJ-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compatibility and technological expandability. However, the adoption of BJ-AM has been limited by the lack of knowledge with the fundamental understanding of the process principles and characteristics, as well as the relatively few systematic design guideline that are available. In this work, the process design considerations for BJ-AM in green part fabrication were discussed in detail in order to provide a comprehensive perspective of the design for additive manufacturing for the process. Various process factors, including binder saturation, in-process drying, powder spreading, powder feedstock characteristics, binder characteristics and post-process curing, could significantly affect the printing quality of the green parts such as geometrical accuracy and part integrity. For powder feedstock with low flowability, even though process parameters could be optimized to partially offset the printing feasibility issue, the qualities of the green parts will be intrinsically limited due to the existence of large internal voids that are inaccessible to the binder. In addition, during the process development, the balanced combination between the saturation level and in-process drying is of critical importance in the quality control of the green parts.

关键词: binder jetting     additive manufacturing     green part     process optimization     process development    

增材制造专题引言

增材制造专题编委会

《工程(英文)》 2017年 第3卷 第5期 doi: 10.1016/J.ENG.2017.05.027

An identification method for enclosed voids restriction in manufacturability design for additive manufacturing

Shutian LIU,Quhao LI,Wenjiong CHEN,Liyong TONG,Gengdong CHENG

《机械工程前沿(英文)》 2015年 第10卷 第2期   页码 126-137 doi: 10.1007/s11465-015-0340-3

摘要:

Additive manufacturing (AM) technologies, such as selective laser sintering (SLS) and fused deposition modeling (FDM), have become the powerful tools for direct manufacturing of complex parts. This breakthrough in manufacturing technology makes the fabrication of new geometrical features and multiple materials possible. Past researches on designs and design methods often focused on how to obtain desired functional performance of the structures or parts, specific manufacturing capabilities as well as manufacturing constraints of AM were neglected. However, the inherent constraints in AM processes should be taken into account in design process. In this paper, the enclosed voids, one type of manufacturing constraints of AM, are investigated. In mathematics, enclosed voids restriction expressed as the solid structure is simply-connected. We propose an equivalent description of simply-connected constraint for avoiding enclosed voids in structures, named as virtual temperature method (VTM). In this method, suppose that the voids in structure are filled with a virtual heating material with high heat conductivity and solid areas are filled with another virtual material with low heat conductivity. Once the enclosed voids exist in structure, the maximum temperature value of structure will be very high. Based upon this method, the simply-connected constraint is equivalent to maximum temperature constraint. And this method can be easily used to formulate the simply-connected constraint in topology optimization. The effectiveness of this description method is illustrated by several examples. Based upon topology optimization, an example of 3D cantilever beam is used to illustrate the trade-off between manufacturability and functionality. Moreover, the three optimized structures are fabricated by FDM technology to indicate further the necessity of considering the simply-connected constraint in design phase for AM.

关键词: additive manufacturing     topology optimization     manufacturability constraints     design for additive manufacturing     simply-connected constraint    

新型细水雾添加剂成分对灭火性能影响研究

纪欢乐,张青松,吴斌斌,梁天水

《中国工程科学》 2012年 第14卷 第11期   页码 82-87

摘要:

为研究自制细水雾添加剂中主要成分对灭火性能的影响,在开放空间,进行了不同工作压力、不同浓度、不同燃料条件下含添加剂细水雾的灭火研究,实验获取了灭火时间、火焰形态、火焰温度等灭火参数。通过对柴油和汽油两种不同燃料的灭火实验发现,使用含添加剂的细水雾对低沸点、高蒸发速率的汽油灭火效果同样较好。根据加入不同浓度的氟表面活性剂的实验结果比照发现,氟表面活性剂是自制添加剂中起到主要提升灭火性能作用的物质,它通过改变细水雾物理性质使加入自制添加剂的细水雾的灭火性能显著提高。对比调整自制添加剂各物质含量的实验数据,进一步确定添加剂各成分最佳灭火性能浓度。

关键词: 细水雾添加剂     灭火性能     添加剂成分     灭火机理    

Additive manufacturing: technology, applications and research needs

Nannan GUO, Ming C. LEU

《机械工程前沿(英文)》 2013年 第8卷 第3期   页码 215-243 doi: 10.1007/s11465-013-0248-8

摘要:

Additive manufacturing (AM) technology has been researched and developed for more than 20 years. Rather than removing materials, AM processes make three-dimensional parts directly from CAD models by adding materials layer by layer, offering the beneficial ability to build parts with geometric and material complexities that could not be produced by subtractive manufacturing processes. Through intensive research over the past two decades, significant progress has been made in the development and commercialization of new and innovative AM processes, as well as numerous practical applications in aerospace, automotive, biomedical, energy and other fields. This paper reviews the main processes, materials and applications of the current AM technology and presents future research needs for this technology.

关键词: additive manufacturing (AM)     AM processes     AM materials     AM applications    

拓扑优化中采用增材制造填充构件的结构屈曲荷载提升设计 Artical

Anders Clausen, Niels Aage, Ole Sigmund

《工程(英文)》 2016年 第2卷 第2期   页码 250-257 doi: 10.1016/J.ENG.2016.02.006

摘要:

增材制造可实现优质多功能构件所具有的高度复杂几何构型的制备。可以直接制备内含多孔填充的结构部件是其独有特征的一个例证。现有的设计方法还难以充分利用这一设计自由度,直接获得类似结构的设计。本文将展示涂层方法 (coating approach) 的拓扑优化方法来作为多孔填充构件的设计方法,所设计的构件具有显著改进的临界屈曲载荷,从而使得整体结构部件的稳定性增强。传统的柔顺性拓扑优化方法极少在数学模型中考虑构件的屈曲约束,稳定性要求通常要经过后续的校核与改进过程满足。这一后续过程往往只能获得次优设计。本文所展示的方法弥补了传统柔顺性拓扑优化模型中难以考虑构件屈曲约束的缺陷。利用涂层拓扑优化方法与传统柔顺性拓扑优化同时对经典的MBB 梁进行设计,并采用熔丝增材制造技术对设计结果进行了制备。实验结果验证了涂层方法的数学模型的正确性。由于填充材料的性质,在相同条件下,涂层优化得到的多孔填充结构的屈曲载荷比传统优化得到的实体结构高四倍以上。

关键词: 增材制造     填充构件     拓扑优化     屈曲    

Additive direct-write microfabrication for MEMS: A review

Kwok Siong TEH

《机械工程前沿(英文)》 2017年 第12卷 第4期   页码 490-509 doi: 10.1007/s11465-017-0484-4

摘要:

Direct-write additive manufacturing refers to a rich and growing repertoire of well-established fabrication techniques that builds solid objects directly from computer-generated solid models without elaborate intermediate fabrication steps. At the macroscale, direct-write techniques such as stereolithography, selective laser sintering, fused deposition modeling ink-jet printing, and laminated object manufacturing have significantly reduced concept-to-product lead time, enabled complex geometries, and importantly, has led to the renaissance in fabrication known as the . The technological premises of all direct-write additive manufacturing are identical—converting computer generated three-dimensional models into layers of two-dimensional planes or slices, which are then reconstructed sequentially into three-dimensional solid objects in a layer-by-layer format. The key differences between the various additive manufacturing techniques are the means of creating the finished layers and the ancillary processes that accompany them. While still at its infancy, direct-write additive manufacturing techniques at the microscale have the potential to significantly lower the barrier-of-entry—in terms of cost, time and training—for the prototyping and fabrication of MEMS parts that have larger dimensions, high aspect ratios, and complex shapes. In recent years, significant advancements in materials chemistry, laser technology, heat and fluid modeling, and control systems have enabled additive manufacturing to achieve higher resolutions at the micrometer and nanometer length scales to be a viable technology for MEMS fabrication. Compared to traditional MEMS processes that rely heavily on expensive equipment and time-consuming steps, direct-write additive manufacturing techniques allow for rapid design-to-prototype realization by limiting or circumventing the need for cleanrooms, photolithography and extensive training. With current direct-write additive manufacturing technologies, it is possible to fabricate unsophisticated micrometer scale structures at adequate resolutions and precisions using materials that range from polymers, metals, ceramics, to composites. In both academia and industry, direct-write additive manufacturing offers extraordinary promises to revolutionize research and development in microfabrication and MEMS technologies. Importantly, direct-write additive manufacturing could appreciably augment current MEMS fabrication technologies, enable faster design-to-product cycle, empower new paradigms in MEMS designs, and critically, encourage wider participation in MEMS research at institutions or for individuals with limited or no access to cleanroom facilities. This article aims to provide a limited review of the current landscape of direct-write additive manufacturing techniques that are potentially applicable for MEMS microfabrication.

关键词: direct-write     additive manufacturing     microfabrication     MEMS    

Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density

Xiu-Tian-Feng E, Lei Zhang, Fang Wang, Xiangwen Zhang, Ji-Jun Zou

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 358-366 doi: 10.1007/s11705-018-1702-2

摘要:

High energy density fuels are critical for hypersonic aerospace propulsion but suffer from difficulties of ignition delay and incomplete combustion. This research reports aluminum nanoparticles (Al NPs) assisted ignition and combustion of high energy density JP-10 fuel. Al NPs with a size of 16 nm were fabricated through a mild and simple method by decomposing AlH3·Et2O with the addition of a surfactant ligand. The uniform size distribution, nanoscaled size and surface ligand make Al NPs stably suspend in JP-10, with 80% NPs being dispersed in the liquid fuel after six months. A shock tube test shows that the presence of 1 wt-% Al NPs can significantly shorten ignition delay time at temperature of 1500 to 1750 K, promote the combustion, and enhance energy release of JP-10. This work demonstrates the potential of Al NPs as ignition and combustion additive for high energy density fuel in hypersonic applications.

关键词: aluminum nanoparticles     combustion     ignition     shock tube test     high energy density fuel    

Effects of additive NaI on electrodeposition of Al coatings in AlCl

Tianyu Yao, Haiyan Yang, Kui Wang, Haiyan Jiang, Xiao-Bo Chen, Hezhou Liu, Qudong Wang, Wenjiang Ding

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 138-147 doi: 10.1007/s11705-020-1935-8

摘要: Effects of NaI as an additive on electrodeposition of Al coatings in AlCl -NaCl-KCl (80-10-10 wt-%) molten salts electrolyte at 150°C were investigated by means of cyclic voltammetry, chronopotentiometry, scanning electron microscopy and X-ray diffraction (XRD). Results reveal that addition of NaI in the electrolyte intensifies cathodic polarization, inhibits growth of Al deposits and increases number density of charged particles. The electrodeposition of Al coatings in the AlCl -NaCl-KCl molten salts electrolyte proceeds via three-dimensional instantaneous nucleation which however exhibits irrelevance with NaI. Galvanostatic deposition results indicate that NaI could facilitate the formation of uniform Al deposits. A compact coating consisting of Al deposits with an average particle size of 3 μm was obtained at a current density of 50 mA∙cm in AlCl -NaCl-KCl molten salts electrolyte with 10 wt-% NaI. XRD analysis confirmed that NaI could contribute to the formation of Al coating with a preferred crystallographic orientation along (220) plane.

关键词: NaI     additive     electrodeposition     molten salts     Al coating    

标题 作者 时间 类型 操作

喷气发动机部件的增材设计与制造

韩品连

期刊论文

Compressive behavior and energy absorption of polymeric lattice structures made by additive manufacturing

Sheng WANG, Jun WANG, Yingjie XU, Weihong ZHANG, Jihong ZHU

期刊论文

Topology optimization based on reduction methods with applications to multiscale design and additive

Emmanuel TROMME, Atsushi KAWAMOTO, James K. GUEST

期刊论文

Surface accuracy optimization of mechanical parts with multiple circular holes for additive manufacturing

Jinghua XU, Hongsheng SHENG, Shuyou ZHANG, Jianrong TAN, Jinlian DENG

期刊论文

Manufacturing cost constrained topology optimization for additive manufacturing

Jikai LIU, Qian CHEN, Xuan LIANG, Albert C. TO

期刊论文

Enhancing thermostability of -mannanase by protective additives

LIU Zhaohui, QI Wei, WU Weina, LIU Yue, HE Zhimin

期刊论文

Process development for green part printing using binder jetting additive manufacturing

Hadi MIYANAJI, Morgan ORTH, Junaid Muhammad AKBAR, Li YANG

期刊论文

增材制造专题引言

增材制造专题编委会

期刊论文

An identification method for enclosed voids restriction in manufacturability design for additive manufacturing

Shutian LIU,Quhao LI,Wenjiong CHEN,Liyong TONG,Gengdong CHENG

期刊论文

新型细水雾添加剂成分对灭火性能影响研究

纪欢乐,张青松,吴斌斌,梁天水

期刊论文

Additive manufacturing: technology, applications and research needs

Nannan GUO, Ming C. LEU

期刊论文

拓扑优化中采用增材制造填充构件的结构屈曲荷载提升设计

Anders Clausen, Niels Aage, Ole Sigmund

期刊论文

Additive direct-write microfabrication for MEMS: A review

Kwok Siong TEH

期刊论文

Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density

Xiu-Tian-Feng E, Lei Zhang, Fang Wang, Xiangwen Zhang, Ji-Jun Zou

期刊论文

Effects of additive NaI on electrodeposition of Al coatings in AlCl

Tianyu Yao, Haiyan Yang, Kui Wang, Haiyan Jiang, Xiao-Bo Chen, Hezhou Liu, Qudong Wang, Wenjiang Ding

期刊论文