资源类型

期刊论文 20

年份

2023 2

2021 2

2020 2

2018 1

2017 4

2016 1

2015 2

2014 1

2013 1

2012 3

2003 1

展开 ︾

关键词

生物修复 2

含油污泥 1

土壤 1

微生物代谢 1

微生物降解 1

烃降解产甲烷 1

烷烃 1

甘油 1

生物表面活性剂 1

生物转化 1

生物降解 1

石油污染物 1

鼠李糖脂 1

展开 ︾

检索范围:

排序: 展示方式:

Microalgal bioremediation of food-processing industrial wastewater under mixotrophic conditions: Kinetics

Suvidha Gupta,R. A. Pandey,Sanjay B. Pawar

《化学科学与工程前沿(英文)》 2016年 第10卷 第4期   页码 499-508 doi: 10.1007/s11705-016-1602-2

摘要: The microalgae were mixotrophically cultivated in an unsterilized and unfiltered raw food-processing industrial wastewater. Both inorganic carbon (CO -air) and organic carbon (wastewater) were provided simultaneously for microalgae growth. The aim of the study is to find out the utilization rates of total organic carbon (TOC) and chemical oxygen demand (COD) under mixotrophic conditions for a given waste water. About 90% reduction in TOC and COD were obtained for all dilutions of wastewater. Over 60% of nitrate and 40% of phosphate were consumed by microalgae from concentrated raw wastewater. This study shows that microalgae can use both organic and inorganic sources of carbon in more or less quantity under mixotrophic conditions. The growth of microalgae in food-processing industrial wastewater with all studied dilution factors, viz. zero (raw), 1.6 (dilution A), and 5 (dilution B) suggests that the freshwater requirement could be reduced substantially (20%–60%). The degradation kinetics also suggests that the microalgae cultivation on a high COD wastewater is feasible and scalable.

关键词: total organic carbon     wastewater bioremediation     kinetics     mixotrophic cultivation    

Bioremediation of highly contaminated oilfield soil: Bioaugmentation for enhancing aromatic compounds

Jun QIAO, Chengdong ZHANG, Shuiming LUO, Wei CHEN

《环境科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 293-304 doi: 10.1007/s11783-013-0561-9

摘要: This study evaluated the effectiveness of different amendments—including a commercial NPK fertilizer, a humic substance (HS), an organic industrial waste (NovoGro), and a yeast-bacteria consortium—in the remediation of highly contaminated (up to 6% of total petroleum hydrocarbons) oilfield soils. The concentrations of hydrocarbon, soil toxicity, physicochemical properties of the soil, microbial population numbers, enzyme activities and microbial community structures were examined during the 90-d incubation. The results showed that the greatest degradation of total petroleum hydrocarbons (TPH) was observed with the biostimulation using mixture of NPK, HS and NovoGro, a treatment scheme that enhanced both dehydrogenase and lipase activities in soil. Introduction of exogenous hydrocarbon-degrading bacteria (in addition to biostimulation with NPK, HS and NovoGro) had negligible effect on the removal of TPH, which was likely due to the competition between exogenous and autochthonous microorganisms. Nonetheless, the addition of exogenous yeast-bacteria consortium significantly enhanced the removal of the aromatic fraction of the petroleum hydrocarbons, thus detoxifying the soil. The effect of bioaugmentation on the removal of more recalcitrant petroleum hydrocarbon fraction was likely due to the synergistic effect of bacteria and fungi.

关键词: bioremediation     petroleum hydrocarbon     biostimulation     bioaugmentation    

In situ enhanced bioremediation of dichlorvos by a phyllosphere

Jiying NING, Gang GANG, Zhihui BAI, Qing HU, Hongyan QI, Anzhou MA, Xuliang ZHUAN, Guoqiang ZHUANG

《环境科学与工程前沿(英文)》 2012年 第6卷 第2期   页码 231-237 doi: 10.1007/s11783-011-0316-4

摘要: A bacterium capable of degrading dichlorvos was isolated from the rape phyllosphere and designated YD4. The strain was identified as sp., based on its phenotypic features and 16S rRNA gene sequence. Strain YD4 was able to utilize dichlorvos as the sole source of phosphorus. enhanced bioremediation of dichlorvos by YD4 was hereafter studied. Chlorpyrifos and phoxim could also be degraded by this strain as the sole phosphorus source. A higher degradation rate of dichlorvos was observed after spraying YD4 onto the surface of rape leaves when compared to the sterilized-YD4 and water-treated samples. The results indicated that pesticide-degrading epiphytic bacterium could become a new way for phyllosphere bioremediation where the hostile niche is unsuitable for other pesticide-degrading bacteria isolated from soil and water.

关键词: enhanced bioremediation     organophosphorus pesticides     phyllosphere     Flavobacterium sp.    

Combination of the direct electro-Fenton process and bioremediation for the treatment of pyrene-contaminated

Wendi XU,Shuhai GUO,Gang LI,Fengmei LI,Bo WU,Xinhong GAN

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1096-1107 doi: 10.1007/s11783-015-0804-z

摘要: A combined treatment technology (DEF-BIO) using the direct electro-Fenton (DEF) process and bioremediation (BIO) was established in this study. The performance of the DEF-BIO process on the remediation of a pyrene (PYR)-contaminated soil was evaluated in a slurry reactor. The appropriate order of application was to conduct the DEF process followed by BIO, evaluated through analysis of the degradation characteristics of each process individually. In addition, the application time of the DEF process affected the efficiency of the combined process. The optimum time to apply the DEF process was determined through an analysis of the induced changes in PYR intermediates, pH, soil organic matter (SOM) and bacteria. The optimum application time of the DEF process was 6 h. All the induced changes were beneficial for the BIO phase. The removal of PYR was 91.02% for DEF–BIO after 72 h, and the efficiency was almost 50% increased, compared with the individual DEF and BIO treatments. Therefore, the combined process of DEF–BIO process may be an efficient and promising method for the remediation.

关键词: direct electro-Fenton     bioremediation     slurry reactor     combined process     pyrene    

土壤中石油污染物微生物降解及其降解去向

齐永强,王红旗,刘敬奇

《中国工程科学》 2003年 第5卷 第8期   页码 70-75

摘要:

通过多因素对比预实验,将筛选出的7个石油烃降解的主要影响因素以正交表方法组合起来,对其进行了实验研究。探讨了石油迁移转化对于各种土壤物理化学条件及其他环境因素改变的敏感程度,并找出了各主要影响因素的重要性和最佳水平;测定了土壤中所存在的石油污染物在生物降解作用下的后期产物,研究了不同条件下的样品残留污染物组分之间的差异。影响土壤中石油烃类降解的主要因素有土壤石油污染强度、营养物(NH4NO3、K2HPO4)、氧化剂(3%H2O2溶液)、表面活性剂(TW80)、温度、土壤含水率和土壤透气性;在降解的不同阶段,各个因素的重要性以及最佳水平会发生相应的变化;在生物降解后期,土壤中残留的石油污染物主要是正构和异构烷烃;正构烷烃的色谱图由原来的对称钟形变为左陡右缓的偏钟形;异构烷烃所占比重增大,正十五烷和正二十一烷之间的谱图基线被明显抬高。

关键词: 土壤     石油污染物     微生物降解    

Effective remediation of organic-metal co-contaminated soil by enhanced electrokinetic-bioremediation

Fu Chen, Qi Zhang, Jing Ma, Qianlin Zhu, Yifei Wang, Huagen Liang

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1401-y

摘要: Abstract • A new EK-BIO technology was developed to decontaminate e-waste contaminated soil. • Adding sodium citrate in electrolyte was a good choice for decontaminating the soil. • The system has good performance with low cost. This work investigates the influence of electrokinetic-bioremediation (EK-BIO) on remediating soil polluted by persistent organic pollutants (POPs) and heavy metals (mainly Cu, Pb and Ni), originated from electronic waste recycling activity. The results demonstrate that most of POPs and metals were removed from the soil. More than 60% of metals and 90% of POPs in the soil were removed after a 30-day EK-BIO remediation assisted by citrate. A citrate sodium concentration of 0.02 g/L was deemed to be suitable because higher citrate did not significantly improve treatment performance whereas increasing dosage consumption. Citrate increased soil electrical current and electroosmotic flow. After remediation, metal residues mainly existed in stable and low-toxic states, which could effectively lower the potential hazard of toxic metals to the surrounding environment and organisms. EK-BIO treatment influenced soil microbial counts, dehydrogenase activity and community structure.

关键词: Electrokinetic     Co-contamination     Debromination    

Comparison of exogenous degrader-enhanced bioremediation with low-dose persulfate oxidation for polycyclic

《环境科学与工程前沿(英文)》 2023年 第17卷 第11期 doi: 10.1007/s11783-023-1733-x

摘要: Polycyclic aromatic hydrocarbon (PAH)-contaminated soils are usually complex and characterized by a lack of nutrition and soil salinization, resulting in difficulties in soil remediation. In this study, bioaugmentation with a PAH-degrading Bacillus PheN7 (BA) and low-dose persulfate oxidation (PS), along with natural biodegradation, were utilized to remediate alkaline PAH-contaminated soil. The soil used in the study had a pH of 9.35, and the total PAH content was 568.8 ± 31.0 mg/kg dry soil. After 42 d of remediation, the degradation efficiency of PAHs was 96.72% and 93.88% using persulfate oxidation and bioaugmentation, respectively, whereas 38.66% of PAHs were degraded in natural attenuation (NA). Bacillus was the dominant genera throughout the process of bioremediation with the relative abundance of 79.3% on day 42 in the BA system, whereas, Alcanivorax was enriched and became the dominant genera in PS systems. In the meantime, PAH degradation genes were detected with remarkably higher level in the BA system than in PS system during the remediation. In addition to the degradation of contaminants, persulfate oxidation promotes microbial bioremediation efficiency mainly by lowering the pH to neutral and increasing the active phosphorus content in the soil. Microbial species and ecological niches were less reduced in the PS system than in the BA system. Collectively, persulfate oxidation had a better impact on the soil microbiome and is more suitable for long-term soil health than bioaugmentation through PheN7 addition.

关键词: Bioaugmentation     Low-dose persulfate oxidation     Polycyclic aromatic hydrocarbon     Remediation    

Microbial communities biostimulated by ethanol during uranium (VI) bioremediation in contaminated sediment

Mary Beth LEIGH,Wei-Min WU,Erick CARDENAS,Ondrej UHLIK,Sue CARROLL,Terry GENTRY,Terence L. MARSH,Jizhong ZHOU,Philip JARDINE,Craig S. CRIDDLE,James M. TIEDJE

《环境科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 453-464 doi: 10.1007/s11783-014-0721-6

摘要: Stable isotope probing (SIP) was used to identify microbes stimulated by ethanol addition in microcosms containing two sediments collected from the bioremediation test zone at the US Department of Energy Oak Ridge site, TN, USA. One sample was highly bioreduced with ethanol while another was less reduced. Microcosms with the respective sediments were amended with C labeled ethanol and incubated for 7 days for SIP. Ethanol was rapidly converted to acetate within 24 h accompanied with the reduction of nitrate and sulfate. The accumulation of acetate persisted beyond the 7 d period. Aqueous U did not decline in the microcosm with the reduced sediment due to desorption of U but continuously declined in the less reduced sample. Microbial growth and concomitant C-DNA production was detected when ethanol was exhausted and abundant acetate had accumulated in both microcosms. This coincided with U(VI) reduction in the less reduced sample. C originating from ethanol was ultimately utilized for growth, either directly or indirectly, by the dominant microbial community members within 7 days of incubation. The microbial community was comprised predominantly of known denitrifiers, sulfate-reducing bacteria and iron (III) reducing bacteria including , , , and others, including the known U(VI)-reducing bacteria A , and The findings suggest that ethanol biostimulates the U(VI)-reducing microbial community by first serving as an electron donor for nitrate, sulfate, iron (III) and U(VI) reduction, and acetate which then functions as electron donor for U(VI) reduction and carbon source for microbial growth.

关键词: Stable isotope probing (SIP)     ethanol     acetate     uranium reduction     sediment     bioremediation    

Microbial remediation of aromatics-contaminated soil

Ying Xu, Ning-Yi Zhou

《环境科学与工程前沿(英文)》 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0894-x

摘要: Aromatics-contaminated soils were successfully remediated with adding single strains. Bacterial or fungal consortia were successfully used in the cases of bioaugmentation. Microbes combined with chemical or biological factors increase remediation efficiency. The environmental factors had appreciable impacts on the bioaugmentation. Aromatics-contaminated soil is of particular environmental concern as it exhibits carcinogenic and mutagenic properties. Bioremediation, a biological approach for the removal of soil contaminants, has several advantages over traditional soil remediation methodologies including high efficiency, complete pollutant removal, low expense and limited or no secondary pollution. Bioaugmentation, defined as the introduction of specific competent strains or consortia of microorganisms, is a widely applied bioremediation technology for soil remediation. In this review, it is concluded which several successful studies of bioaugmentation of aromatics-contaminated soil by single strains or mixed consortia. In recent decades, a number of reports have been published on the metabolic machinery of aromatics degradation by microorganisms and their capacity to adapt to aromatics-contaminated environments. Thus, microorganisms are major players in site remediation. The bioremediation/bioaugmentation process relies on the immense metabolic capacities of microbes for transformation of aromatic pollutants into essentially harmless or, at least, less toxic compounds. Aromatics-contaminated soils are successfully remediated with adding not only single strains but also bacterial or fungal consortia. Furthermore several novel approaches, which microbes combined with physical, chemical or biological factors, increase remediation efficiency of aromatics-contaminated soil. Meanwhile, the environmental factors also have appreciable impacts on the bioaugmentation process. The biostatistics method is recommended for analysis of the effects of bioaugmentation treatments.

关键词: Aromatics-contaminated soil     Bacteria     Bioaugmentation     Bioremediation     Fungi    

concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation

Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang

《环境科学与工程前沿(英文)》 2018年 第12卷 第5期 doi: 10.1007/s11783-018-1064-5

摘要:

Soil microbial community is not significantly shaped by alkane concentrations

Alkane concentrations alter dominant alkane degraders in soils

Different alkanes are preferentially degraded at different contamination level

Different types of alkane monooxygenase genes responsible for alkane degradation

关键词: Petroleum hydrocarbon contaminated site     n-alkane contamination level     n-alkane biodegradation     Soil bacterial community     Alkane degraders     Alkane-monooxygenase genes    

Synergistic degradation of pyrene and volatilization of arsenic by cocultures of bacteria and a fungus

Shuang LIU, Yanwei HOU, Guoxin SUN

《环境科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 191-199 doi: 10.1007/s11783-012-0470-3

摘要: The combination of two bacteria ( sp. PY1 and sp. PY2) and a fungus ( sp. PY3), isolated from contaminated soils near a coking plant, were investigated with respect to their capability to degrade pyrene and volatilize arsenic. The results showed that all strains could use pyrene and arsenic as carbon and energy sources in a basal salts medium (BSM), with the combined potential to degrade pyrene and volatilize arsenic. sp. PY1, sp. PY2 and sp. PY3 were isolated from the consortium and were shown to degrade pyrene and volatilize arsenic independently and in combination. Fungal-bacterial coculture has shown that the most effective removal of pyrene was 96.0% and volatilized arsenic was 84.1% after incubation in liquid medium after 9 days culture, while bioremediation ability was 87.2% in contaminated soil with 100 mg·kg pyrene. The highest level of arsenic volatilization amounted to 13.9% of the initial As concentration in contaminated soil after 63 days. Therefore, a synergistic degradation system is the most effective approach to degrade pyrene and remove arsenic in contaminated soil. These findings highlight the role of these strains in the bioremediation of environments contaminated with pyrene and arsenic.

关键词: pyrene     arsenic     bioremediation     bacteria     fungus    

Pollution and biodegradation of hexabromocyclododecanes: A review

Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1190-8

摘要: • Bioremediation is the most cost-effective approach for degradation of HBCDs. • Bacteria or bacterial consortia are used in the cases of bio-augmentation. • Microbes combined with phytoremediation increase the remediation efficiency. Hexabromocyclododecanes (HBCDs) are the most common brominated flame-retardants after polybrominated diphenyl ethers. HBCDs can induce cancer by causing inappropriate antidiuretic hormone syndrome. Environmental contamination with HBCDs has been detected globally, with concentrations ranging from ng to mg. Methods to degrade HBCDs include physicochemical methods, bioremediation, and phytoremediation. The photodegradation of HBCDs using simulated sunlight or ultraviolet lamps, or chemical catalysts are inefficient and expensive, as is physicochemical degradation. Consequently, bioremediation is considered as the most cost-effective and clean approach. To date, five bacterial strains capable of degrading HBCDs have been isolated and identified: Pseudomonas sp. HB01, Bacillus sp. HBCD-sjtu, Achromobacter sp. HBCD-1, Achromobacter sp. HBCD-2, and Pseudomonas aeruginosa HS9. The molecular mechanisms of biodegradation of HBCDs are discussed in this review. New microbial resources should be explored to increase the resource library in order to identify more HBCD-degrading microbes and functional genes. Synthetic biology methods may be exploited to accelerate the biodegradation capability of existing bacteria, including modification of the degrading strains or functional enzymes, and artificial construction of the degradation microflora. The most potentially useful method is combining micro-degradation with physicochemical methods and phytoremediation. For example, exogenous microorganisms might be used to stimulate the adsorption capability of plants for HBCDs, or to utilize an interaction between exogenous microorganisms and rhizosphere microorganisms to form a new rhizosphere microbial community to enhance the biodegradation and absorption of HBCDs.

关键词: Hexabromocyclododecane     Biodegradation     Bioremediation     Phytoremediation     Bacterium    

Mercury removal and recovery by immobilized

Meifang CHIEN, Ryo NAKAHATA, Tetsuya ONO, Keisuke MIYAUCHI, Ginro ENDO

《化学科学与工程前沿(英文)》 2012年 第6卷 第2期   页码 192-197 doi: 10.1007/s11705-012-1284-3

摘要: From several mercury removing microorganisms, we selected MB1, which is non-pathogenic, broad-spectrum mercury resistant, mercuric ion reducing, heat tolerant, and spore-forming, as a useful bacterium for bioremediation of mercury pollution. In this study, mercury removal performance of the immobilized MB1 was investigated to develop safe, efficient and stable catalytic bio-agent for mercury bioremediation. The results showed that the alginate gel immobilized MB1 cells efficiently removed 80% of mercury from the solution containing 10 mg/L mercuric chloride within 24 h. These cells still had high activity of mercury removal even after mercuric ion loading was repeated for nine times. The analysis of mercury contents of the alginate beads with and without immobilized MB1 suggested that a large portion of reduced metallic mercury was trapped in the gel beads. It was concluded that the alginate gel immobilized MB1 cells have potential to remove and recover mercury from mercury-containing water.

关键词: mercury removal     immobilized bacteria     alginate gel     bioremediation    

Competition for electrons between reductive dechlorination and denitrification

Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann

《环境科学与工程前沿(英文)》 2017年 第11卷 第6期 doi: 10.1007/s11783-017-0959-x

摘要: It is common that 2,4,6-trichlorophenol (TCP) coexists with nitrate or nitrite in industrial wastewaters. In this work, simultaneous reductive dechlorination of TCP and denitrification of nitrate or nitrite competed for electron donor, which led to their mutual inhibition. All inhibitions could be relieved to a certain degree by augmenting an organic electron donor, but the impact of the added electron donor was strongest for TCP. For simultaneous reduction of TCP together with nitrate, TCP’s removal rate value increased 75% and 150%, respectively, when added glucose was increased from 0.4 mmol·L to 0.5 mmol·L and to 0.76 mmol·L . For comparison, the removal rate for nitrate increased by only 25% and 114% for the same added glucose. The relationship between their initial biodegradation rates versus their initial concentrations could be represented well with the Monod model, which quantified their half-maximum-rate concentration ( value), and values for TCP, nitrate, and nitrite were larger with simultaneous reduction than independent reduction. The increases in are further evidence that competition for the electron donor led to mutual inhibition. For bioremediation of wastewater containing TCP and oxidized nitrogen, both reduction reactions should proceed more rapidly if the oxidized nitrogen is nitrite instead of nitrate and if readily biodegradable electron acceptor is augmented.

关键词: Competition for electrons     Denitrification     Reductive dechlorination     Bioremediation     Nitrate     2     4     6-trichlorophenol    

Merits and limitations of TiO

Yu Yang, Hassan Javed, Danning Zhang, Deyi Li, Roopa Kamath, Kevin McVey, Kanwartej Sra, Pedro J.J. Alvarez

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 387-394 doi: 10.1007/s11705-017-1657-8

摘要: Heavy hydrocarbons (HHCs) in soils impacted by crude oil spills are generally recalcitrant to biodegradation due to their low bioavailability and complex chemical structure. In this study, soils were pretreated with varying concentrations of ultraviolet radiation A (UVA) or ultraviolet radiation C (UVC) activated titanium dioxide (TiO ) (1%–5%) under varying moisture conditions (0%–300% water holding capacity (WHC)) to enhance biodegradation of HCCs and shorten remediation timeframes. We demonstrate that pretreatment of impacted soils with UVC-activated TiO in soil slurries could enhance bioremediation of HHCs. ?Total petroleum hydrocarbon (TPH) removal after 24 h exposure to UVC (254 nm and 4.8 mW/cm ) was (19.1±1.6)% in slurries with 300% WHC and 5 wt-% TiO . TPH removal was non-selective in the C15-C36 range and increased with moisture content and TiO concentration. In a 10-d bioremediation test, TPH removal in treated soil increased to (26.0±0.9)%, compared to (15.4±0.8)% for controls without photocatalytic pre-treatment. Enhanced biodegradation was also confirmed by respirometry. This suggests that addition of UVC-activated TiO to soil slurries can transform recalcitrant hydrocarbons into more bioavailable and biodegradable byproducts and increase the rate of subsequent biodegradation. However, similar results were not observed for soils pretreated with UVA activated TiO . This suggests that activation of TiO by sunlight and direct addition of TiO to unsaturated soils within landfarming setting may not be a feasible approach. Nevertheless, less than 1% of UVA (7.5 mW/cm ) or UVC (1.4 mW/cm ) penetrated beyond 0.3 cm soil depth, indicating that limited light penetration through soil would hinder the ability of TiO to enhance soil bioremediation under land farming conditions.

关键词: TiO2 pretreatment     bioremediation     total petroleum hydrocarbons     ultraviolet    

标题 作者 时间 类型 操作

Microalgal bioremediation of food-processing industrial wastewater under mixotrophic conditions: Kinetics

Suvidha Gupta,R. A. Pandey,Sanjay B. Pawar

期刊论文

Bioremediation of highly contaminated oilfield soil: Bioaugmentation for enhancing aromatic compounds

Jun QIAO, Chengdong ZHANG, Shuiming LUO, Wei CHEN

期刊论文

In situ enhanced bioremediation of dichlorvos by a phyllosphere

Jiying NING, Gang GANG, Zhihui BAI, Qing HU, Hongyan QI, Anzhou MA, Xuliang ZHUAN, Guoqiang ZHUANG

期刊论文

Combination of the direct electro-Fenton process and bioremediation for the treatment of pyrene-contaminated

Wendi XU,Shuhai GUO,Gang LI,Fengmei LI,Bo WU,Xinhong GAN

期刊论文

土壤中石油污染物微生物降解及其降解去向

齐永强,王红旗,刘敬奇

期刊论文

Effective remediation of organic-metal co-contaminated soil by enhanced electrokinetic-bioremediation

Fu Chen, Qi Zhang, Jing Ma, Qianlin Zhu, Yifei Wang, Huagen Liang

期刊论文

Comparison of exogenous degrader-enhanced bioremediation with low-dose persulfate oxidation for polycyclic

期刊论文

Microbial communities biostimulated by ethanol during uranium (VI) bioremediation in contaminated sediment

Mary Beth LEIGH,Wei-Min WU,Erick CARDENAS,Ondrej UHLIK,Sue CARROLL,Terry GENTRY,Terence L. MARSH,Jizhong ZHOU,Philip JARDINE,Craig S. CRIDDLE,James M. TIEDJE

期刊论文

Microbial remediation of aromatics-contaminated soil

Ying Xu, Ning-Yi Zhou

期刊论文

concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation

Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang

期刊论文

Synergistic degradation of pyrene and volatilization of arsenic by cocultures of bacteria and a fungus

Shuang LIU, Yanwei HOU, Guoxin SUN

期刊论文

Pollution and biodegradation of hexabromocyclododecanes: A review

Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang

期刊论文

Mercury removal and recovery by immobilized

Meifang CHIEN, Ryo NAKAHATA, Tetsuya ONO, Keisuke MIYAUCHI, Ginro ENDO

期刊论文

Competition for electrons between reductive dechlorination and denitrification

Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann

期刊论文

Merits and limitations of TiO

Yu Yang, Hassan Javed, Danning Zhang, Deyi Li, Roopa Kamath, Kevin McVey, Kanwartej Sra, Pedro J.J. Alvarez

期刊论文