资源类型

期刊论文 2135

会议视频 73

会议专题 1

年份

2024 5

2023 243

2022 264

2021 217

2020 166

2019 157

2018 123

2017 121

2016 94

2015 104

2014 68

2013 53

2012 58

2011 66

2010 65

2009 60

2008 62

2007 78

2006 49

2005 34

展开 ︾

关键词

碳中和 24

能源 14

遗传算法 9

优化 7

环境 7

神经网络 7

医学 6

二氧化碳 5

可持续发展 5

机器学习 5

低碳经济 4

多目标优化 4

智能制造 4

目标识别 4

预测 4

BP神经网络 3

COVID-19 3

人工智能 3

信息技术 3

展开 ︾

检索范围:

排序: 展示方式:

Metal-free, carbon-based catalysts for oxygen reduction reactions

Zhiyi Wu,Zafar Iqbal,Xianqin Wang

《化学科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 280-294 doi: 10.1007/s11705-015-1524-4

摘要: Developing metal-free, carbon-based catalysts to replace platinum-based catalysts for oxygen reduction reactions (ORRs) is an emerging area of research. In recent years, different carbon structures including carbon doped with IIIA-VIIA heteroatoms (C−M site-based, where M represents the doped heteroatom) and polynitrogen (PN) compounds encapsulated in carbon nanotubes (CNTs) (N−N site-based) have been synthesized. Compared to metallic catalysts, these materials are highly active, stable, inexpensive, and environmentally friendly. This review discusses the development of these materials, their ORR performances and the mechanisms for how the incorporation of heteroatoms enhances the ORR activity. Strategies for tailoring the structures of the carbon substrates to improve ORR performance are also discussed. Future studies in this area will need to include optimizing synthetic strategies to control the type, amount and distribution of the incorporated heteroatoms, as well as better understanding the ORR mechanisms in these catalysts.

关键词: oxygen reduction reaction     electrocatalysis     metal-free     carbon-based     polynitrogen    

Recent advances in antimony removal using carbon-based nanomaterials: A review

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-021-1482-7

摘要:

• The synthesis and physicochemical properties of various CNMs are reviewed.

关键词: Antimony     Carbon nanomaterials     Adsorption     Membrane separation    

Insights into carbon-based materials for catalytic dehydrogenation of low-carbon alkanes and ethylbenzene

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1623-1648 doi: 10.1007/s11705-023-2328-6

摘要: Direct dehydrogenation with high selectivity and oxidative dehydrogenation with low thermal limit has been regarded as promising methods to solve the increasing demands of light olefins and styrene. Metal-based catalysts have shown remarkable performance for these reactions, such as Pt, CrOx, Co, ZrOx, Zn and V. Compared with metal-based catalysts, carbon materials with stable structure, rich pore texture and large surface area, are ideal platforms as the catalysts and the supports for dehydrogenation reactions. In this review, carbon materials applied in direct dehydrogenation and oxidative dehydrogenation reactions including ordered mesoporous carbon, carbon nanodiamond, carbon nanotubes, graphene and activated carbon, are summarized. A general introduction to the dehydrogenation mechanism and active sites of carbon catalysts is briefly presented to provide a deep understanding of the carbon-based materials used in dehydrogenation reactions. The unique structure of each carbon material is presented, and the diversified synthesis methods of carbon catalysts are clarified. The approaches for promoting the catalytic activity of carbon catalysts are elaborated with respect to preparation method optimization, suitable structure design and heteroatom doping. The regeneration mechanism of carbon-based catalysts is discussed for providing guidance on catalytic performance enhancement. In addition, carbon materials as the support of metal-based catalysts contribute to exploiting the excellent catalytic performance of catalysts due to superior structural characteristics. In the end, the challenges in current research and strategies for future improvements are proposed.

关键词: carbon materials     dehydrogenation     active sites     mechanism     catalytic performance     support    

Carbon-based materials for photodynamic therapy: A mini-review

Di Lu, Ran Tao, Zheng Wang

《化学科学与工程前沿(英文)》 2019年 第13卷 第2期   页码 310-323 doi: 10.1007/s11705-018-1750-7

摘要: Carbon-based materials have been extensively applied in photodynamic therapy owing to the unique optical characteristics, good biocompatibility and tunable systematic toxicity. This mini-review mainly focuses on the recent application of carbon-based materials including graphene, carbon nanotube, fullerene, corannulene, carbon dot and mesoporous carbon nanoparticle. The carbon-based materials can perform not only as photosensitizers, but also effective carriers for photosensitizers in photodynamic therapy, and its combined treatment.

关键词: photodynamic therapy     carbon-based materials     graphene     carbon nanotube     fullerene     corannulene     carbon dot     mesoporous carbon nanoparticle    

碳基燃料固体氧化物燃料电池发展前景

韩敏芳,彭苏萍

《中国工程科学》 2013年 第15卷 第2期   页码 4-6

摘要:

以煤炭、石油、天然气为代表的化石燃料是中国乃至世界的主要能源资源,其平均发电效率低(30 %左右),环境危害大,迫切需要改进。燃料电池是一种高效发电装置,将燃料的化学能直接转换为电能。在各种燃料电池中,固体氧化物燃料电池(SOFC)可以直接使用各种含碳燃料,很容易与现有能源资源供应系统兼容,一次发电效率高(50 %~60 %);SOFC采用全固态结构,长期稳定性好;不使用贵金属催化剂,成本低廉。SOFC尤其适用于分布式发电系统和动力电源系统。基于我国能源结构的现状和稀土资源优势,很有必要发展碳基燃料SOFC。在SOFC从示范运行逐步走向产业化应用的过程中,迫切需要进一步提高其长期稳定性并降低成本,所以今后的研究重点是碳基燃料SOFC关键材料和系统集成创新,解决其中的材料设计和制备、碳基燃料反应特性、电池构造、理论模拟、系统集成与运行过程中的基础科学和技术问题,为高效率、低成本、稳定可靠的碳基燃料SOFC系统产业化奠定基础。

关键词: 固体氧化物燃料电池     碳基燃料     发电系统    

碳基燃料SOFC阳极材料研究进展

孙春文,孙杰,杨伟,马朝晖,李 帅,仙存妮, 王少飞,肖睿娟,施思齐,李 泓,陈立泉

《中国工程科学》 2013年 第15卷 第2期   页码 77-87

摘要:

固体氧化物燃料电池(SOFCs)是一类可以将燃料气体的化学能以高效而环境友好的方式直接转化为电能的电化学反应器。最近的研究趋势是发展可以直接电化学氧化碳氢化合物燃料(如天然气)的电池,但是使用碳氢化合物作为燃料时,目前最常使用的镍-氧化钇稳定的氧化锆(Ni/YSZ)金属陶瓷阳极材料具有易积碳和硫中毒的缺点。因此,研究在燃料气氛下具有混合离子-电子电导的替代阳极材料显得尤为必要。综述了以碳基燃料工作的SOFCs阳极材料研究的一些进展,并展望本领域在未来的发展趋势。

关键词: 固体氧化物燃料电池     阳极材料     碳基燃料     抗积碳     抗硫    

Pt–C interactions in carbon-supported Pt-based electrocatalysts

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1677-1697 doi: 10.1007/s11705-023-2300-5

摘要: Carbon-supported Pt-based materials are highly promising electrocatalysts. The carbon support plays an important role in the Pt-based catalysts by remarkably influencing the growth, particle size, morphology, dispersion, electronic structure, physiochemical property and function of Pt. This review summarizes recent progress made in the development of carbon-supported Pt-based catalysts, with special emphasis being given to how activity and stability enhancements are related to Pt–C interactions in various carbon supports, including porous carbon, heteroatom doped carbon, carbon-based binary support, and their corresponding electrocatalytic applications. Finally, the current challenges and future prospects in the development of carbon-supported Pt-based catalysts are discussed.

关键词: Pt–C interactions     Pt-based materials     carbon support     electrocatalysis    

Case-based reasoning for selection of the best practices in low-carbon city development

Zhenhua HUANG, Hongqin FAN, Liyin SHEN

《工程管理前沿(英文)》 2019年 第6卷 第3期   页码 416-432 doi: 10.1007/s42524-019-0036-1

摘要: Cities emit extensive carbon emissions, which are considered a major contributor to the severe issue of climate change. Various low-carbon development programs have been initiated at the city level worldwide to address this problem. These practices are invaluable in promoting the development of low-carbon cities. Therefore, an effective approach should be developed to help decision makers select the best practices from previous experience on the basis of the impact features of carbon emission and city context features. This study introduces a case-based reasoning methodology for a specific city to select the best practices as references for low-carbon city development. The proposed methodology consists of three main components, namely, case representation, case retrieval, and case adaption and retention. For city representation, this study selects city context features and the impact features of carbon emission to characterize and represent a city. The proposed methodology is demonstrated by applying it to the selection of the best practices for low-carbon development of Chengdu City in Sichuan Province, China.

关键词: low-carbon city     carbon emission     best practices     case-based reasoning    

Electrospun porous carbon nanofibers derived from bio-based phenolic resins as free-standing electrodes

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 504-515 doi: 10.1007/s11705-022-2260-1

摘要: Phenolic resins were employed to prepare electrospun porous carbon nanofibers with a high specific surface area as free-standing electrodes for high-performance supercapacitors. However, the sustainable development of conventional phenolic resin has been challenged by petroleum-based phenol and formaldehyde. Lignin with abundant phenolic hydroxyl groups is the main non-petroleum resource that can provide renewable aromatic compounds. Hence, lignin, phenol, and furfural were used to synthesize bio-based phenolic resins, and the activated carbon nanofibers were obtained by electrospinning and one-step carbonization activation. Fourier transform infrared and differential scanning calorimetry were used to characterize the structural and thermal properties. The results reveal that the apparent activation energy of the curing reaction is 89.21 kJ·mol–1 and the reaction order is 0.78. The activated carbon nanofibers show a uniform diameter, specific surface area up to 1100 m2·g–1, and total pore volume of 0.62 cm3·g–1. The electrode demonstrates a specific capacitance of 238 F·g–1 (0.1 A·g–1) and good rate capability. The symmetric supercapacitor yields a high energy density of 26.39 W·h·kg–1 at 100 W·kg–1 and an excellent capacitance retention of 98% after 10000 cycles. These results confirm that the activated carbon nanofiber from bio-based phenolic resins can be applied as electrode material for high-performance supercapacitors.

关键词: lignin     bio-based phenolic resins     electrospinning     activated carbon nanofibers     supercapacitors    

A carbon efficiency upgrading method for mechanical machining based on scheduling optimization strategy

Shuo ZHU, Hua ZHANG, Zhigang JIANG, Bernard HON

《机械工程前沿(英文)》 2020年 第15卷 第2期   页码 338-350 doi: 10.1007/s11465-019-0572-8

摘要: Low-carbon manufacturing (LCM) is increasingly being regarded as a new sustainable manufacturing model of carbon emission reduction in the manufacturing industry. In this paper, a two-stage low-carbon scheduling optimization method of job shop is presented as part of the efforts to implement LCM, which also aims to reduce the processing cost and improve the efficiency of a mechanical machining process. In the first stage, a task assignment optimization model is proposed to optimize carbon emissions without jeopardizing the processing efficiency and the profit of a machining process. Non-dominated sorting genetic algorithm II and technique for order preference by similarity to an ideal solution are then adopted to assign the most suitable batch task of different parts to each machine. In the second stage, a processing route optimization model is established to plan the processing sequence of different parts for each machine. Finally, niche genetic algorithm is utilized to minimize the makespan. A case study on the fabrication of four typical parts of a machine tool is demonstrated to validate the proposed method.

关键词: Low-carbon manufacturing     carbon efficiency     multi-objective optimization     two-stage scheduling     job shop    

Photocatalytic reduction of carbon dioxide by titanium oxide-based semiconductors to produce fuels

Xi CHEN, Fangming JIN

《能源前沿(英文)》 2019年 第13卷 第2期   页码 207-220 doi: 10.1007/s11708-019-0628-9

摘要: To tackle the crisis of global warming, it is imperative to control and mitigate the atmospheric carbon dioxide level. Photocatalytic reduction of carbon dioxide into solar fuels furnishes a gratifying solution to utilize and reduce carbon dioxide emission and simultaneously generate renewable energy to sustain the societies. So far, titanium oxide-based semiconductors have been the most prevalently adopted catalysts in carbon dioxide photoreduction. This mini-review provides a general summary of the recent progresses in titanium oxide-catalyzed photocatalytic reduction of carbon dioxide. It first illustrates the use of structural engineering as a strategy to adjust and improve the catalytic performances. Then, it describes the introduction of one/two exogenous elements to modify the photocatalytic activity and/or selectivity. Lastly, it discusses multi-component hybrid titanium oxide composites.

关键词: photocatalysis     carbon dioxide reduction     semiconductors     titanium oxide     renewable fuels    

Review of solvent based carbon-dioxide capture technologies

Kathryn A. MUMFORD,Yue WU,Kathryn H. SMITH,Geoffrey W. STEVENS

《化学科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 125-141 doi: 10.1007/s11705-015-1514-6

摘要: Currently, a large proportion of global fossil fuel emissions originate from large point sources such as power generation or industrial processes. This trend is expected to continue until the year 2030 and beyond. Carbon capture and storage (CCS), a straightforward and effective carbon reduction approach, will play a significant role in reducing emissions from these sources into the future if atmospheric carbon dioxide (CO ) emissions are to be stabilized and global warming limited below a threshold of 2 °C. This review provides an update on the status of large scale integrated CCS technologies using solvent absorption for CO capture and provides an insight into the development of new solvents, including advanced amine solvents, amino acid salts, carbonate systems, aqueous ammonia, immiscible liquids and ionic liquids. These proposed new solvents aim to reduce the overall cost CO capture by improving the CO absorption rate, CO capture capacity, thereby reducing equipment size and decreasing the energy required for solvent regeneration.

关键词: large scale     carbon dioxide     carbon capture     solvent absorption    

Improved rate-based modeling of carbon dioxide absorption with aqueous monoethanolamine solution

Stefania MOIOLI, Laura A. PELLEGRINI, Simone GAMBA, Ben LI

《化学科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 123-131 doi: 10.1007/s11705-014-1415-0

摘要: This paper focuses on modeling and simulation of a post-combustion carbon dioxide capture in a coal-fired power plant by chemical absorption using monoethanolamine. The aim is to obtain a reliable tool for process simulation: a customized rate-based model has been developed and implemented in the ASPEN Plus software, along with regressed parameters for the Electrolyte-NRTL model worked out in a previous research. The model is validated by comparison with experimental data of a pilot plant and can provide simulation results very close to experimental data.

关键词: Absorption     carbon dioxide capture     rate-based model     monoethanolamine scrubbing    

Tribological mechanism of carbon group nanofluids on grinding interface under minimum quantity lubricationbased on molecular dynamic simulation

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0733-z

摘要: Carbon group nanofluids can further improve the friction-reducing and anti-wear properties of minimum quantity lubrication (MQL). However, the formation mechanism of lubrication films generated by carbon group nanofluids on MQL grinding interfaces is not fully revealed due to lack of sufficient evidence. Here, molecular dynamic simulations for the abrasive grain/workpiece interface were conducted under nanofluid MQL, MQL, and dry grinding conditions. Three kinds of carbon group nanoparticles, i.e., nanodiamond (ND), carbon nanotube (CNT), and graphene nanosheet (GN), were taken as representative specimens. The [BMIM]BF4 ionic liquid was used as base fluid. The materials used as workpiece and abrasive grain were the single-crystal Ni–Fe–Cr series of Ni-based alloy and single-crystal cubic boron nitride (CBN), respectively. Tangential grinding force was used to evaluate the lubrication performance under the grinding conditions. The abrasive grain/workpiece contact states under the different grinding conditions were compared to reveal the formation mechanism of the lubrication film. Investigations showed the formation of a boundary lubrication film on the abrasive grain/workpiece interface under the MQL condition, with the ionic liquid molecules absorbing in the groove-like fractures on the grain wear’s flat face. The boundary lubrication film underwent a friction-reducing effect by reducing the abrasive grain/workpiece contact area. Under the nanofluid MQL condition, the carbon group nanoparticles further enhanced the tribological performance of the MQL technique that had benefited from their corresponding tribological behaviors on the abrasive grain/workpiece interface. The behaviors involved the rolling effect of ND, the rolling and sliding effects of CNT, and the interlayer shear effect of GN. Compared with the findings under the MQL condition, the tangential grinding forces could be further reduced by 8.5%, 12.0%, and 14.1% under the diamond, CNT, and graphene nanofluid MQL conditions, respectively.

关键词: grinding     minimum quantity lubrication     carbon group nanofluid     tribological mechanism    

State-of-the-art progress in overall water splitting of carbon nitride based photocatalysts

Bing LUO, Yuxin ZHAO, Dengwei JING

《能源前沿(英文)》 2021年 第15卷 第1期   页码 600-620 doi: 10.1007/s11708-021-0737-0

摘要: Converting solar energy into hydrogen (H ) by photocatalytic water splitting is a promising approach to simultaneously address the increasing energy demand and environmental issues. Half decade has passed since the discovery of photo-induced water splitting phenomenon on TiO photoanode, while the solar to H efficiency is still around 1%, far below the least industrial requirement. Therefore, developing efficient photocatalyst with a high energy conversion efficiency is still one of the main tasks to be overcome. Graphitic carbon nitride (g-C N ) is just such an emerging and potential semiconductor. Therefore, in this review, the state-of-the-art advances in g-C N based photocatalysts for overall water splitting were summarized in three sections according to the strategies used, and future challenges and new directions were discussed.

关键词: photocatalysis     overall water splitting     carbon nitride     hydrogen    

标题 作者 时间 类型 操作

Metal-free, carbon-based catalysts for oxygen reduction reactions

Zhiyi Wu,Zafar Iqbal,Xianqin Wang

期刊论文

Recent advances in antimony removal using carbon-based nanomaterials: A review

期刊论文

Insights into carbon-based materials for catalytic dehydrogenation of low-carbon alkanes and ethylbenzene

期刊论文

Carbon-based materials for photodynamic therapy: A mini-review

Di Lu, Ran Tao, Zheng Wang

期刊论文

碳基燃料固体氧化物燃料电池发展前景

韩敏芳,彭苏萍

期刊论文

碳基燃料SOFC阳极材料研究进展

孙春文,孙杰,杨伟,马朝晖,李 帅,仙存妮, 王少飞,肖睿娟,施思齐,李 泓,陈立泉

期刊论文

Pt–C interactions in carbon-supported Pt-based electrocatalysts

期刊论文

Case-based reasoning for selection of the best practices in low-carbon city development

Zhenhua HUANG, Hongqin FAN, Liyin SHEN

期刊论文

Electrospun porous carbon nanofibers derived from bio-based phenolic resins as free-standing electrodes

期刊论文

A carbon efficiency upgrading method for mechanical machining based on scheduling optimization strategy

Shuo ZHU, Hua ZHANG, Zhigang JIANG, Bernard HON

期刊论文

Photocatalytic reduction of carbon dioxide by titanium oxide-based semiconductors to produce fuels

Xi CHEN, Fangming JIN

期刊论文

Review of solvent based carbon-dioxide capture technologies

Kathryn A. MUMFORD,Yue WU,Kathryn H. SMITH,Geoffrey W. STEVENS

期刊论文

Improved rate-based modeling of carbon dioxide absorption with aqueous monoethanolamine solution

Stefania MOIOLI, Laura A. PELLEGRINI, Simone GAMBA, Ben LI

期刊论文

Tribological mechanism of carbon group nanofluids on grinding interface under minimum quantity lubricationbased on molecular dynamic simulation

期刊论文

State-of-the-art progress in overall water splitting of carbon nitride based photocatalysts

Bing LUO, Yuxin ZHAO, Dengwei JING

期刊论文