资源类型

期刊论文 19

年份

2023 1

2022 1

2021 1

2020 1

2018 2

2017 1

2015 1

2013 4

2011 1

2009 1

2007 5

展开 ︾

关键词

元分析 1

反硝化生物反应器 1

反硝化除磷 1

基质 1

好氧摄磷 1

成本分析 1

环境影响 1

电子受体 1

硝酸盐去除 1

聚磷菌 1

展开 ︾

检索范围:

排序: 展示方式:

Nitrifying and denitrifying bacteria in aerobic granules formed in sequencing batch airlift reactors

WANG Fang, YANG Fenglin, QI Aijiu

《环境科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 184-189 doi: 10.1007/s11783-007-0032-2

摘要: The purpose of this study was to investigate nitrifying bacteria and denitrifying bacteria isolated from aerobic granules. Aerobic granules were formed in an internal-circulate sequencing batch airlift reactor (SBAR) and biodegradation of NH3--N was analyzed in the reactor. Bacteria were isolated and determined from aerobic granules using selected media. The growth properties and morphology of bacteria colonies were observed by controlling aerobic or anaerobic conditions in the culture medium. It was found that bacteria in aerobic granules were diverse and some of them were facultative aerobes. The diversity of bacteria in aerobic granules was a premise of simultaneous nitrification and denitrification.

Effect of denitrifying bacteria on the electrochemical reaction of activated carbon fiber in electrochemical

YING Diwen, JIA Jinping, ZHANG Lehua

《环境科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 305-310 doi: 10.1007/s11783-007-0051-z

摘要: An electrochemical-activated denitrifying biofilm system consisting of activated carbon fiber electrodes immobilized with denitrifying bacteria film as cathode was studied. A revised model for an electrochemical-activated denitrifying biofilm was developed and validated by electrochemical analysis of cathodal polarization curves and nitrate consumption rate. The cathodal polarization curve and nitrate consumption rate were introduced to verify the rate of electrochemical reaction and the activity of denitrifying bacteria, respectively. It was shown that the denitrification process effectively strengthened the electrochemical reaction while the electron also intensified denitrification activity. Electron was transferred between electrochemical process and biological process not only by hydrogen molecule but also by new produced active hydrogen atom. Additionally, a parameter of apparent exchange current density was deprived from the cathodal polarization curve with high overpotential, and a new bio-effect current density was defined through statistical analysis, which was linearly dependent to the activity of denitrification bacteria. Activated carbon fiber (ACF) electrode was also found to be more suitable to the electrochemical denitrifying system compared with graphite and platinum.

关键词: ACF     apparent exchange     hydrogen molecule     activated     biological process    

Online control of biofilm and reducing carbon dosage in denitrifying biofilter: pilot and full-scale

Xiuhong Liu, Hongchen Wang, Qing Yang, Jianmin Li, Yuankai Zhang, Yongzhen Peng

《环境科学与工程前沿(英文)》 2017年 第11卷 第1期 doi: 10.1007/s11783-017-0895-9

摘要: Online control of DNBF was studied in the pilot-scale and full-scale experiments. DNBF was controlled by the online monitored effluent nitrate and turbidity. The effluent nitrate lower than 3 mg·L and saving 18% of carbon were both achieved. Denitrifying biofilter (DNBF) is widely used for advanced nitrogen removal in the reclaimed wastewater treatment plants (RWWTPs). Manual control of DNBF easily led to unstable process performance and high cost. Consequently, there is a need to automatic control of two decisive operational processes, carbon dosage and backwash, in DNBF. In this study, online control of DNBF was investigated in the pilot-scale DNBF (600 m ·d ), and then applied in the full-scale DNBF (10 × 104 m3·d ). A novel simple online control strategy for carbon dosage with the effluent nitrate as the sole control parameter was designed and tested in the pilot-scale DNBF. Backwash operation was optimized based on the backwash control strategy using turbidity as control parameter. Using the integrated control strategy, in the pilot-scale DNBF, highly efficient nitrate removal with effluent TN level lower than 3 mg·L was achieved and DNBF was not clogged any more. The online control strategy for carbon dosage was successfully applied in a RWWTP. Using the online control strategy, the effluent nitrate concentration was controlled relatively stable and carbon dosage was saved for 18%.

关键词: Reclaimed water treatment     Denitrifying biofilter     Carbon dosage     Backwash control    

Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode

Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第6期   页码 913-919 doi: 10.1007/s11783-013-0583-3

摘要: A scaled up microbial fuel cell (MFC) of a 50 L volume was set up with an oxic-anoxic two-stage biocathode and activated semicoke packed electrodes to achieve simultaneous power generation and nitrogen and organic matter removals. An average maximum power density of 43.1 W·m was obtained in batch operating mode. By adjusting the two external resistances, the denitrification in the A-MFC and power production in the O-MFC could be enhanced. In continuous mode, when the hydraulic retention times were set at 6 h, 8 h and 12 h, the removal efficiencies of COD, and total nitrogen (TN) were higher than 95%, 97%, and 84%, respectively. Meanwhile the removal loads for COD, and TN were10, 0.37 and 0.4 kg·(m ·d) , respectively.

关键词: microbial fuel cell (MFC)     oxic-anoxic two stage biocathode     denitrifying    

Influence of carbon source and temperature on the denitrifying phosphorus removal process

WANG Yayi, WANG Shuying, PENG Yongzhen, Zhu Guibing, LING Yunfang

《环境科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 226-232 doi: 10.1007/s11783-007-0039-8

摘要: To supply the valuable operating parameters for the popular usage of the new denitrifying phosphors removal process, it is essential to study the dominant biochemical reactions and the characteristics of denitrifying phosphorus removing bacteria (DPB). Thus, parallel batch experiments using DPB sludge were carried out to assess the effect of substrates (sewage, HAc, and endogenous carbon source) on denitrifying dephosphorus removal efficiency in this study. The results showed that the initial specific phosphorus release rate increased with the high concentration of the short-chain volatile fatty acids ratio in the influent, and sufficient phosphorus was released by DPB. This improved the subsequent denitrification and phosphorus uptake efficiency. The specific endogenous denitrification mainly relies on the internal carbon source (PHB) stored by poly-P bacteria. Denitrifying phosphorus removing bacteria were very hungry when the internal PHB was consumed. Consequently, the specific endogenous denitrification rate was low and the phosphorus uptake did not happen. On the other hand, in the experiment, the denitrifying phosphorus removal performance under two temperature conditions (8 10?C and 25 26?C) was also investigated and analyzed. It was found that the lower temperature decreased the specific phosphorus release and uptake rate, but did not inhibit the denitrifying phosphorus removal completely. Therefore, the negative influence of the low temperature on the overall phosphorus removal was not significant.

Simultaneous denitrifying phosphorus accumulation in a sequencing batch reactor

YUAN Linjiang, HAN Wei, WANG Lei, YANG Yongzhe, WANG Zhiying

《环境科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 23-27 doi: 10.1007/s11783-007-0004-6

摘要: In order to achieve simultaneous nitrogen and phosphorus removal in the biological treatment process, denitrifying phosphorus accumulation (DNPA) and its affecting factors were studied in a sequencing batch reactor (SBR) with synthetic wastewater. The results showed that when acetate was used as the sole carbon resource in the influent, the sludge acclimatized under anaerobic/aerobic operation had good phosphorus removal ability. Denitrifying phosphorus accumulation was observed soon when fed with nitrate instead of aeration following the anaerobic stage, which is a vital premise to DNPA. If DNPA sludge is fed with nitrate prior to the anaerobic stage, the DNPA would weaken or even disappear. At the high concentration of nitrate fed in the anoxic stage, the longer anoxic time needed, the better the DNPA was. Induced DNPA did not disappear even though an aerobic stage followed the anoxic stage, but the shorter the aerobic stage lasted, the higher the proportions of phosphorus removal via DNPA to total removal.

关键词: SBR     synthetic wastewater     Induced DNPA     resource     removal ability    

Short-term effects of excessive anaerobic reaction time on anaerobic metabolism of denitrifying polyphosphate

Gang GUO, Yayi WANG, Chong WANG, Hong WANG, Mianli PAN, Shaowei CHEN

《环境科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 616-624 doi: 10.1007/s11783-013-0505-4

摘要: The short-term effect of anaerobic reaction time (AnRT) (i.e., 90, 120 and 150 min) on the denitrifying phosphorus (P) removal performance and N O production was examined using a denitrifying enhanced biologic phosphorus removal (EBPR) sludge acclimatized with mixed acetate (HAc) and propionate (Pro) (in the molar ratio 3∶1) as carbon sources. The results showed that when the AnRT was prolonged from 90 to 150 min, the anaerobic polyhydroxyalkanoate (PHA) synthesis was decreased by 15.3%. Moreover, the ineffective PHA consumption occurred in anaerobic phases and contributed to an increased accumulation and higher free nitrous acid (FNA) concentrations (≥0.001–0.0011 mg HNO -N/L) in the subsequent anoxic phases, causing a severe inhibition on anoxic P-uptake and denitrification. Accordingly, the total nitrogen (TN) and total phosphorus (TP) removal efficiencies dropped by approximately 6.3% and 85.5%, respectively; and the ratio of anoxic N O-N production to TN removal increased by approximately 3.8%. The fluorescence in situ hybridization (FISH) analysis revealed that the sludge was mainly dominated by (62.0% (SE = 1.5%)). In conclusion, the short-term excessive anaerobic reaction time negatively impacted denitrifying P removal performance and stimulated more N O production, and its effect on P removal was more obvious than that on nitrogen removal.

关键词: Denitrifying phosphorus removal     anaerobic reaction time     nitrous oxide     polyhydroxyalkanoate     free nitrous acid     fluorescence in-situ hybridization    

Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration

Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng

《环境科学与工程前沿(英文)》 2018年 第12卷 第5期 doi: 10.1007/s11783-018-1084-1

摘要:

A novel two sludge pre-A2NSBR system was developed.

Advanced N and P removal was optimized to treat real domestic wastewater.

Nitrifiers and PAOs were enriched with 19.41% and 26.48%, respectively.

Acetate was demonstrated as the high-quality carbon source type.

关键词: Denitrifying phosphorus removal     C/N ratio     Nitrate recycling     Carbon source type     Biological nutrient removal     Pre-A2NSBR system    

Corrigendum to: Optimization of denitrifying phosphorus removal in a predenitrification anaerobic/anoxic

Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-020-1233-1

Advanced nitrogen and phosphorus removal in A

Jianhua WANG, Yongzhen PENG, Yongzhi CHEN

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 474-480 doi: 10.1007/s11783-011-0360-0

摘要: A laboratory-scale anaerobic-anoxic-aerobic process (A O) with a small aerobic zone and a bigger anoxic zone and biologic aerated filter (A O-BAF) system was operated to treat low carbon-to-nitrogen ratio domestic wastewater. The A O process was employed mainly for organic matter and phosphorus removal, and for denitrification. The BAF was only used for nitrification which coupled with a settling tank Compared with a conventional A O process, the suspended activated sludge in this A O-BAF process contained small quantities of nitrifier, but nitrification overwhelmingly conducted in BAF. So the system successfully avoided the contradiction in sludge retention time (SRT) between nitrifying bacteria and phosphorus accumulating organisms (PAOs). Denitrifying phosphorus accumulating organisms (DPAOs) played an important role in removing up to 91% of phosphorus along with nitrogen, which indicated that the suspended activated sludge process presented a good denitrifying phosphorus removal performance. The average removal efficiency of chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and were 85.56%, 92.07%, 81.24% and 98.7% respectively. The effluent quality consistently satisfied the national first level A effluent discharge standard of China. The average sludge volume index (SVI) was 85.4 mL·g additionally, the volume ratio of anaerobic, anoxic and aerobic zone in A O process was also investigated, and the results demonstrated that the optimum value was 1∶6∶2.

关键词: Anoxic zone and biologic aerated filter (A2O-BAF) system     domestic wastewater with low carbon-to-nitrogen ratio     advanced nitrogen and phosphorus removal     denitrifying phosphorus removal    

The main anammox-based processes, the involved microbes and the novel process concept from the application perspective

《环境科学与工程前沿(英文)》 2022年 第16卷 第7期 doi: 10.1007/s11783-021-1487-1

摘要:

• The PNA, denitratation/anammox, and DAMO/anammox process are reviewed together.

关键词: Anammox     Nitritation     Denitratation     Denitrifying anaerobic methane oxidation     Mainstream wastewater    

基于元分析揭示全球尺度下反硝化反应器中基质材料对硝态氮去除的显著影响 Review

范豫川, 庄杰, Michael Essington, Sindhu Jagadamma, John Schwartz, Jaehoon Lee

《工程(英文)》 2023年 第21卷 第2期   页码 214-226 doi: 10.1016/j.eng.2022.08.017

摘要:

反硝化生物反应器(DNBR)被广泛用于减少农业废水中过量的硝态氮。其性能取决于基质的物理和化学性质。在以前的研究中,已经对一部分常见基质做了总结。然而,很少有研究尝试确定基质类型在硝态氮去除中起作用的一般模式。本研究利用从63 篇同行评议文章中收集的数据总结了41 种基质类型,包括219 个独立DNBR单元。基质分为四类:①天然碳(NC),如木屑;②非天然碳(NNC),如可生物降解聚合物[如聚己内酯(PCL)和废品(如纸板)];③无机材料(IM),如非碳材料(如氧化铁);④复合材料(MM),如上述材料的混合物。通过对硝态氮去除速率[NRR,氮去除(g∙m‒3∙d‒1)]和硝态氮去除效率(NRE, %)的元分析,对这些材料进行比较和评估。本文综合阐述了基质效果(NRR和NRE)、潜在机理、污染交换和成本分析。我们的分析表明,木屑和玉米芯是NC中最具成本效益的基质。对比所有参与研究的基质,我们建议将MM作为最优基质,尤其是具有很大的改进空间的基于木屑和玉米芯的基质。该分析有助于优化DNBR的设计,以满足使用者对环境、经济和实用的需求。

关键词: 反硝化生物反应器     基质     硝酸盐去除     元分析     环境影响     成本分析    

Practical consideration for design and optimization of the step feed process

Shijian GE, Yongzhen PENG, Congcong LU, Shuying WANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 135-142 doi: 10.1007/s11783-012-0454-3

摘要: Based on the anoxic/oxic (A/O) step feed process, a modified University of Cape Town (UCT) step feed process was developed by adding an anaerobic zone and adjusting sludge return pipeline. Performance evaluation of these two types of processes was investigated by optimizing operational parameters, such as the anaerobic/anoxic/oxic volumes, internal recycle ratios, and sludge retention times, for removal of chemical oxygen demanding (COD), nitrogen, and phosphorus. Results showed high removal efficiencies of COD of (85.0±1.7)%, ammonium of (99.7±0.2)%, total nitrogen (TN) of (85.5±1.7)%, phosphorus of (95.1±3.3)%, as well as excellent sludge settleability with average sludge volume index of (83.7±9.5) L·mg in the modified UCT process. Moreover, (61.5±6.0)% of influent COD was efficiently involved in denitrification or phosphorus release process. As much as 35.3% of TN was eliminated through simultaneous nitrification and denitrification process in aerobic zones. In addition, the presence of denitrifying phosphorus accumulating organisms (DNPAOs), accounting for approximately 39.2% of PAOs, was also greatly beneficial to the nitrogen and phosphorus removal. Consequently, the modified UCT step feed process was more attractive for the wastewater treatment plant, because it had extremely competitive advantages such as higher nutrient removal efficiencies, lower energy and dosages consumption, excellent settling sludge and operational assurance.

关键词: step feed     anoxic/oxic (A/O)     University of Cape Town (UCT)     simultaneous nitrification and denitrification (SND)     denitrifying phosphorus removal     biological nutrient removal (BNR)    

Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process

Hongxun HOU, Shuying WANG, Yongzhen PENG, Zhiguo YUAN, Fangfang YIN, Wang GAN

《环境科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 106-111 doi: 10.1007/s11783-009-0005-8

摘要: The anaerobic-anoxic oxidation ditch (A /O OD) process is popularly used to eliminate nutrients from domestic wastewater. In order to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal, and enhance the denitrifying phosphorus removal in the A /O OD process, a pilot-scale A /O OD plant (375 L) was conducted. At the same time batch tests using sequence batch reactors (12 L and 4 L) were operated to reveal the significance of anoxic phosphorus removal. The results indicated that: The average removal efficiency of COD, , , and TN were 88.2%, 92.6%, 87.8%, and 73.1%, respectively, when the steady state of the pilot-scale A /O OD plant was reached during 31-73 d, demonstrating a good denitrifying phosphorus removal performance. Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms could be used as electron receptors in denitrifying phosphorus removal, and the phosphorus uptake rate with as the electron receptor was higher than that with when the initial concentration of either or was 40 mg/L.

关键词: wastewater treatment     anaerobic-anoxic (A2/O)     oxidation ditch (OD)     biological phosphorus removal     denitrifying phosphorus removal    

Denitrification and phosphorus uptake by DPAOs using nitrite as an electron acceptor by step-feed strategies

Bin MA, Shuying WANG, Guibing ZHU, Shijian GE, Junmin WANG, Nanqi Ren, Yongzhen PENG

《环境科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 267-272 doi: 10.1007/s11783-012-0439-2

摘要: Denitrifying phosphorus accumulating organisms (DPAOs) using nitrite as an electron acceptor can reduce more energy. However, nitrite has been reported to have an inhibition on denitrifying phosphorus removal. In this study, the step-feed strategy was proposed to achieve low nitrite concentration, which can avoid or relieve nitrite inhibition. The results showed that denitrification rate, phosphorus uptake rate and the ratio of the phosphorus uptaken to nitrite denitrified (anoxic P/N ratio) increased when the nitrite concentration was 15 mg·L after step-feeding nitrite. The maximum denitrification rate and phosphorus uptake rate was 12.73 mg and 18.75 mg , respectively. These rates were higher than that using nitrate (15 mg·L ) as an electron acceptor. The maximum anoxic P/N ratio was 1.55 mg . When the nitrite concentration increased from 15 to 20 mg after addition of nitrite, the anoxic phosphorus uptake was inhibited by 64.85%, and the denitrification by DPAOs was inhibited by 61.25%. Denitrification rate by DPAOs decreased gradually when nitrite (about 20 mg·L ) was added in the step-feed SBR. These results indicated that the step-feed strategy can be used to achieve denitrifying phosphorus removal using nitrite as an electron acceptor, and nitrite concentration should be maintained at low level (<15 mg·L in this study).

关键词: denitrifying phosphate accumulating organisms (DPAOs)     denitrification     phosphorus uptake     nitrite     step-feed     enhanced biological phosphorus removal    

标题 作者 时间 类型 操作

Nitrifying and denitrifying bacteria in aerobic granules formed in sequencing batch airlift reactors

WANG Fang, YANG Fenglin, QI Aijiu

期刊论文

Effect of denitrifying bacteria on the electrochemical reaction of activated carbon fiber in electrochemical

YING Diwen, JIA Jinping, ZHANG Lehua

期刊论文

Online control of biofilm and reducing carbon dosage in denitrifying biofilter: pilot and full-scale

Xiuhong Liu, Hongchen Wang, Qing Yang, Jianmin Li, Yuankai Zhang, Yongzhen Peng

期刊论文

Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode

Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG

期刊论文

Influence of carbon source and temperature on the denitrifying phosphorus removal process

WANG Yayi, WANG Shuying, PENG Yongzhen, Zhu Guibing, LING Yunfang

期刊论文

Simultaneous denitrifying phosphorus accumulation in a sequencing batch reactor

YUAN Linjiang, HAN Wei, WANG Lei, YANG Yongzhe, WANG Zhiying

期刊论文

Short-term effects of excessive anaerobic reaction time on anaerobic metabolism of denitrifying polyphosphate

Gang GUO, Yayi WANG, Chong WANG, Hong WANG, Mianli PAN, Shaowei CHEN

期刊论文

Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration

Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng

期刊论文

Corrigendum to: Optimization of denitrifying phosphorus removal in a predenitrification anaerobic/anoxic

Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng

期刊论文

Advanced nitrogen and phosphorus removal in A

Jianhua WANG, Yongzhen PENG, Yongzhi CHEN

期刊论文

The main anammox-based processes, the involved microbes and the novel process concept from the application perspective

期刊论文

基于元分析揭示全球尺度下反硝化反应器中基质材料对硝态氮去除的显著影响

范豫川, 庄杰, Michael Essington, Sindhu Jagadamma, John Schwartz, Jaehoon Lee

期刊论文

Practical consideration for design and optimization of the step feed process

Shijian GE, Yongzhen PENG, Congcong LU, Shuying WANG

期刊论文

Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process

Hongxun HOU, Shuying WANG, Yongzhen PENG, Zhiguo YUAN, Fangfang YIN, Wang GAN

期刊论文

Denitrification and phosphorus uptake by DPAOs using nitrite as an electron acceptor by step-feed strategies

Bin MA, Shuying WANG, Guibing ZHU, Shijian GE, Junmin WANG, Nanqi Ren, Yongzhen PENG

期刊论文