检索范围:
排序: 展示方式:
徐勇,杨静宇,陆建峰
《中国工程科学》 2005年 第7卷 第10期 页码 38-42
在PCA基础上发展出的KPCA方法能抽取样本的非线性特征分量。然而, 基于KPCA的特征抽取需计算所有训练样本与待抽取特征的样本间的核函数, 因此, 训练集的大小制约着特征抽取的效率。为了提高效率,假设特征空间中变换轴可由一部分训练样本(节点)线性表出,并设计了改进的KPCA算法(IKPCA)。该算法抽取某样本特征时,只需计算该样本与节点间的核函数即可。实验结果显示,IKPCA在对应较好性能的同时,具有明显的效率上的优势。
Yun KONG, Tianyang WANG, Zheng LI, Fulei CHU
《机械工程前沿(英文)》 2017年 第12卷 第3期 页码 406-419 doi: 10.1007/s11465-017-0419-0
Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.
关键词: wind turbine planet gear fault feature extraction spectral kurtosis time wavelet energy spectrum
Feature extraction from slice data for reverse engineering
ZHANG Yingjie, LU Shangning
《机械工程前沿(英文)》 2007年 第2卷 第1期 页码 25-31 doi: 10.1007/s11465-007-0004-z
关键词: feasibility corresponding B-spline pre-determined tolerance extraction
张生亮,徐勇,杨健,杨静宇
《中国工程科学》 2006年 第8卷 第8期 页码 50-55
提出了利用两类投影抽取特征、用并行策略融合特征进行人脸识别的新方法。先用一维的基于向量的投影抽取一组特征,再用基于二维的图像投影的方法抽取一组特征,用复向量将样本的两组特征向量组合在一起,在复向量空间分析主分量(CPCA),抽取人脸图像的鉴别特征。在FERET人脸库上的实验结果表明,该方法的识别性能比用单个特征有10%左右的提高。
关键词: 特征融合 线性鉴别分析(LDA) 特征抽取 人脸识别
Peng ZHOU, Zhike PENG, Shiqian CHEN, Yang YANG, Wenming ZHANG
《机械工程前沿(英文)》 2018年 第13卷 第2期 页码 292-300 doi: 10.1007/s11465-017-0443-0
With the development of large rotary machines for faster and more integrated performance, the condition monitoring and fault diagnosis for them are becoming more challenging. Since the time-frequency (TF) pattern of the vibration signal from the rotary machine often contains condition information and fault feature, the methods based on TF analysis have been widely-used to solve these two problems in the industrial community. This article introduces an effective non-stationary signal analysis method based on the general parameterized time–frequency transform (GPTFT). The GPTFT is achieved by inserting a rotation operator and a shift operator in the short-time Fourier transform. This method can produce a high-concentrated TF pattern with a general kernel. A multi-component instantaneous frequency (IF) extraction method is proposed based on it. The estimation for the IF of every component is accomplished by defining a spectrum concentration index (SCI). Moreover, such an IF estimation process is iteratively operated until all the components are extracted. The tests on three simulation examples and a real vibration signal demonstrate the effectiveness and superiority of our method.
关键词: rotary machines condition monitoring fault diagnosis GPTFT SCI
基于核空间非线性特征提取的图像质量评价方法 Article
Yong DING,Nan LI,Yang ZHAO,Kai HUANG
《信息与电子工程前沿(英文)》 2016年 第17卷 第10期 页码 1008-1017 doi: 10.1631/FITEE.1500439
Feature extraction of hyperspectral images for detecting immature green citrus fruit
Yongjun DING, Won Suk LEE, Minzan LI
《农业科学与工程前沿(英文)》 2018年 第5卷 第4期 页码 475-484 doi: 10.15302/J-FASE-2018241
At an early immature growth stage of citrus, a hyperspectral camera of 369–1042 nm was employed to acquire 30 hyperspectral images in order to detect immature green fruit within citrus trees under natural illumination conditions. First, successive projections algorithm (SPA) were implemented to select 677, 804, 563, 962, and 405 nm wavebands and to construct multispectral images from the original hyperspectral images for further processing. Then, histogram threshold segmentation using NDVI of 804 and 677 nm was implemented to remove image backgrounds. Three slope parameters, calculated from the pairs 405 and 563 nm, 563 and 677 nm, and 804 and 962 nm were used to construct a classifier to identify the potential citrus fruit. Then, a marker-controlled watershed segmentation based on wavelet transform was applied to obtain potential fruit areas. Finally, a green fruit detection model was constructed according to Grey Level Co-occurrence Matrix (GLCM) texture features of the independent areas. Three supervised classifiers, logistic regression, random forest and support vector machine (SVM) were developed using texture features. The detection accuracies were 79%, 75%, and 86% for the logistic regression, random forest, and SVM models, respectively. The developed algorithm showed a great potential for identifying immature green citrus for an early yield estimation.
关键词: hyperspectral green citrus image processing fruit detection precision agriculture yield mapping
Local uncorrelated local discriminant embedding for face recognition
Xiao-hu MA,Meng YANG,Zhao ZHANG
《信息与电子工程前沿(英文)》 2016年 第17卷 第3期 页码 212-223 doi: 10.1631/FITEE.1500255
关键词: Feature extraction Local discriminant embedding Local uncorrelated criterion Face recognition
基于判别扩散映射分析的内蕴特征提取方法在刀具磨损评估中的应用 None
Yi-xiang HUANG, Xiao LIU, Cheng-liang LIU, Yan-ming LI
《信息与电子工程前沿(英文)》 2018年 第19卷 第11期 页码 1352-1361 doi: 10.1631/FITEE.1601512
Basic research on machinery fault diagnostics: Past, present, and future trends
Xuefeng CHEN, Shibin WANG, Baijie QIAO, Qiang CHEN
《机械工程前沿(英文)》 2018年 第13卷 第2期 页码 264-291 doi: 10.1007/s11465-018-0472-3
Machinery fault diagnosis has progressed over the past decades with the evolution of machineries in terms of complexity and scale. High-value machineries require condition monitoring and fault diagnosis to guarantee their designed functions and performance throughout their lifetime. Research on machinery Fault diagnostics has grown rapidly in recent years. This paper attempts to summarize and review the recent R&D trends in the basic research field of machinery fault diagnosis in terms of four main aspects: Fault mechanism, sensor technique and signal acquisition, signal processing, and intelligent diagnostics. The review discusses the special contributions of Chinese scholars to machinery fault diagnostics. On the basis of the review of basic theory of machinery fault diagnosis and its practical applications in engineering, the paper concludes with a brief discussion on the future trends and challenges in machinery fault diagnosis.
关键词: fault diagnosis fault mechanism feature extraction signal processing intelligent diagnostics
屈梁生,胡兆勇
《中国工程科学》 2004年 第6卷 第11期 页码 20-28
机械工业是我国的传统工业,机械装备技术直接影响和制约国民经济诸多领域的发展。信息科学是一门迅速发展的前沿学科,已经渗透到国民经济的各个领域。文章从机械产品的角度出发,讨论了如何用信息技术来提升和发展传统的机械产品,提出了机械产品信息化的内涵、特点与实现的步骤;结合作者过去的一些科研实践,重点分析了机械产品信息化过程的信息融合和特征提取两个技术关键;文章最后强调了理论开拓是产品拥有自主知识产权和核心技术的前提。
Entity and relation extraction with rule-guided dictionary as domain knowledge
《工程管理前沿(英文)》 2022年 第9卷 第4期 页码 610-622 doi: 10.1007/s42524-022-0226-0
关键词: entity extraction relation extraction prior knowledge domain rule
《机械工程前沿(英文)》 2024年 第19卷 第3期 doi: 10.1007/s11465-024-0793-3
关键词: defect detection of solder joints VMMAO-YOLO ultra-lightweight and high-performance multi-scale feature extraction VMC and MAA modules OS-GD
吴小俊,杨静宇,王士同,刘同明,Josef Kittler
《中国工程科学》 2004年 第6卷 第2期 页码 44-47
对统计不相关最佳鉴别矢量集的本质进行研究,在基于总体散布矩阵特征分解的基础上,构造了一种白化变换,使得变换后的样本空间中的总体散布矩阵为单位矩阵,这样使得传统的最佳鉴别矢量集算法得到的均是具有统计不相关的最佳鉴别矢量集,从而揭示了统计不相关最佳鉴别变换的本质——白化变换加普通的线性鉴别变换。该方法的最大优点在于所获得的最优鉴别矢量同时具有正交性和统计不相关性。该方法对代数特征抽取具有普遍适用性。用ORL人脸数据库的数值实验,验证了该方法的有效性。
标题 作者 时间 类型 操作
Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet
Yun KONG, Tianyang WANG, Zheng LI, Fulei CHU
期刊论文
signal analysis based on general parameterized time--frequency transform and its application in the featureextraction of a rotary machine
Peng ZHOU, Zhike PENG, Shiqian CHEN, Yang YANG, Wenming ZHANG
期刊论文
Feature extraction of hyperspectral images for detecting immature green citrus fruit
Yongjun DING, Won Suk LEE, Minzan LI
期刊论文
Local uncorrelated local discriminant embedding for face recognition
Xiao-hu MA,Meng YANG,Zhao ZHANG
期刊论文
Basic research on machinery fault diagnostics: Past, present, and future trends
Xuefeng CHEN, Shibin WANG, Baijie QIAO, Qiang CHEN
期刊论文
VMMAO-YOLO: an ultra-lightweight and scale-aware detector for real-time defect detection of avionics thermistor wire solder joints
期刊论文