资源类型

期刊论文 259

会议视频 2

年份

2023 13

2022 26

2021 34

2020 16

2019 18

2018 7

2017 5

2016 9

2015 6

2014 9

2013 9

2012 18

2011 1

2010 8

2009 20

2008 11

2007 11

2006 8

2005 2

2004 3

展开 ︾

关键词

DX桩 11

承载力 7

沉降 6

光纤通信 3

复合材料 3

光纤传感技术 2

影响因素 2

数值分析 2

整体穿刺 2

极限承载力 2

玻璃钢 2

纤维 2

育龄妇女 2

AF/PSTM 1

ANSYS 1

AR模型 1

DX旋挖挤扩灌注桩 1

DX群桩 1

FRP 聚合物 1

展开 ︾

检索范围:

排序: 展示方式:

Experimental analysis on strength and failure modes of wood beam-column connections

Zhenhua HUANG,Sheldon Q SHI,Liping CAI

《结构与土木工程前沿(英文)》 2014年 第8卷 第3期   页码 260-269 doi: 10.1007/s11709-014-0261-y

摘要: This research experimentally examined the strength, failure modes, and behaviors of dowel-bearing and fiber-bearing wood beam-column connections and explored the effects of cyclic loading on the strength, failure modes, and behaviors of those connections. Base on limited numbers of exploratory laboratory tests (6 preliminary tests in total), the authors observed that the typical bolted connection (dowel-bearing type wood beam-column connection with fiber-bearing surfaces) showed good behavior (large peak moment) under the monotonic loads, and the tenon joint connection (fiber-bearing wood beam-column connection) showed good behavior under cyclic loads. The cyclic property of loading reduced the strength of the dowel-bearing type wood beam-column connections, but increased the strength of fiber-bearing type wood beam-column connections. More importantly, the authors identified a possible location of safety concern in current national design specifications (NDS) standards for the typical bolted connection (dowel-bearing connection with fiber bearing surface) under cyclic loading because the tested value was smaller than the NDS calculated value. But, because of the small amount of tests conducted, no final conclusion can be drawn based on those preliminary observations yet. A large number of repetitive laboratory tests should be conducted.

关键词: wood     connection     dowel-bearing     fiber-bearing    

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 742-753 doi: 10.1007/s11709-021-0732-x

摘要: This study investigates the use of glass fiber-reinforced polyester (GRP) pipe powder (PP) for improving the bearing capacity of sandy soils. After a series of direct share tests, the optimum PP addition for improving the bearing capacity of soils was found to be 12%. Then, using the optimum PP addition, the bearing capacity of the soil was estimated through a series of loading tests on a shallow foundation model placed in a test box. The bearing capacity of sandy soil was improved by up to 30.7%. The ratio of the depth of the PP-reinforced soil to the diameter of the foundation model (H/D) of 1.25 could sufficiently strengthen sandy soil when the optimum PP ratio was used. Microstructural analyses showed that the increase in the bearing capacity can be attributed to the chopped fibers in the PP and their multiaxial distribution in the soil. Besides improving the engineering properties of soils, using PP as an additive in soils would reduce the accumulation of the industrial waste, thus providing a twofold benefit.

关键词: shallow foundation     sandy soil     bearing capacity     soil improvement     pipe powder    

钢纤维混凝土厚承台承载力影响因素分析

孙成访,谷倩,陈习子,彭少民

《中国工程科学》 2003年 第5卷 第6期   页码 79-83

摘要:

在完成30个缩尺模型为1∶5的二桩混凝土和钢纤维混凝土承台试件的试验研究中,通过改变混凝土强度、钢纤维体积率、承台有效厚度、配筋量及配筋方式,观察和记录了不同条件下桩承台裂缝的开展与分布,承台底部中点挠度、侧边混凝土应变和底部受拉钢筋应变,并系统地分析了影响钢纤维混凝土二桩厚承台极限承载力的主要因素。分析结果为进一步研究钢纤维混凝土二桩承台的抗冲切、抗剪及配筋计算提供了试验基础,并为《钢纤维混凝土结构技术规程》的修订提供了背景材料。

关键词: 钢纤维     纤维增强混凝土     桩基厚承台     承载力     影响因素    

The influence of hand hole on the ultimate strength and crack pattern of shield tunnel segment joints by scaled model test

Shaochun WANG, Xi JIANG, Yun BAI

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1200-1213 doi: 10.1007/s11709-019-0546-2

摘要: With the shield tunnel going deeper and deeper, the circumferential axial force becomes the governing factor rather than the bending moment. The hand hole acts as a weak point and initial damage in the segment joint especially when the circumferential axial force is extremely high. Despite the wide application of steel fiber or synthetic fiber in the tunneling, limited researches focus on the structural responses of segment joint with macro structural synthetic fiber (MSSF). In this paper, a 1:2 reduced-scale experiment was conducted to study the structural performance of the segment joint with different types of hand holes under ultra-high axial force. Special attention is paid to failure mode and structural performance (bearing capacity, deformation, cracking, and toughness). Moreover, segment joints with MSSF are also tested to evaluate the effects of MSSF on the failure mode and structural performance of the segment joints. The experiment results show that the hand hole becomes the weakest point of the segment joint under ultra-high axial force. A \ /-type crack pattern is always observed before the final failure of the segment joints. Different types and sizes of the hand hole have different degree of influences on the structural behavior of segment joints. The segment joint with MSSF shows higher ultimate bearing capacity and toughness compared to segment joint with common concrete. Besides, the MSSF improves the initial cracking load and anti-spallling resistance of the segment joint.

关键词: shield tunneling     structural synthetic fiber concrete     hand hole     segment joint     ultimate bearing capacity     crack pattern    

Iterative HOEO fusion strategy: a promising tool for enhancing bearing fault feature

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0725-z

摘要: As parameter independent yet simple techniques, the energy operator (EO) and its variants have received considerable attention in the field of bearing fault feature detection. However, the performances of these improved EO techniques are subjected to the limited number of EOs, and they cannot reflect the non-linearity of the machinery dynamic systems and affect the noise reduction. As a result, the fault-related transients strengthened by these improved EO techniques are still subject to contamination of strong noises. To address these issues, this paper presents a novel EO fusion strategy for enhancing the bearing fault feature nonlinearly and effectively. Specifically, the proposed strategy is conducted through the following three steps. First, a multi-dimensional information matrix (MDIM) is constructed by performing the higher order energy operator (HOEO) on the analysis signal iteratively. MDIM is regarded as the fusion source of the proposed strategy with the properties of improving the signal-to-interference ratio and suppressing the noise in the low-frequency region. Second, an enhanced manifold learning algorithm is performed on the normalized MDIM to extract the intrinsic manifolds correlated with the fault-related impulses. Third, the intrinsic manifolds are weighted to recover the fault-related transients. Simulation studies and experimental verifications confirm that the proposed strategy is more effective for enhancing the bearing fault feature than the existing methods, including HOEOs, the weighting HOEO fusion, the fast Kurtogram, and the empirical mode decomposition.

关键词: higher order energy operator     fault diagnosis     manifold learning     rolling element bearing     information fusion    

New analysis model for rotor-bearing systems based on plate theory

Zhinan ZHANG, Mingdong ZHOU, Weimin DING, Huifang MA

《机械工程前沿(英文)》 2019年 第14卷 第4期   页码 461-473 doi: 10.1007/s11465-019-0525-2

摘要: The purpose of this work is to develop a new analysis model for angular-contact, ball-bearing systems on the basis of plate theory instead of commonly known approaches that utilize spring elements. Axial and radial stiffness on an annular plate are developed based on plate, Timoshenko beam, and plasticity theories. The model is developed using theoretical and inductive methods and validated through a numerical simulation with the finite element method. The new analysis model is suitable for static and modal analyses of rotor-bearing systems. Numerical examples are presented to reveal the effectiveness and applicability of the proposed approach.

关键词: rotor-bearing system     rolling element bearing     plate theory     finite element analysis    

API-based assessment on urban air environment bearing capability in China

Jinnan WANG,Jing ZHANG,Hongqiang JIANG,Yaling LU

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1049-1055 doi: 10.1007/s11783-014-0662-0

摘要: Given the complexity and time-consuming of the conventional environmental capacity based assessment on air environment carrying capacity; a new method for assessing urban air environment carrying capacity based on air pollution index (API) is presented. By using this new method, the air environmental bearing capability of 333 cities at the prefecture level and above is assessed. The results show that of the 333 cities 9.6% is of high bearing capability, 34.5% relatively high bearing capability, 52.6% medium bearing capability, 2.7% low capability, and 0.6% is of weak bearing capability; in terms of regional distribution, the western region is of relatively high air environment bearing capability, followed by north-eastern and eastern regions, and the ambient air quality in the middle region is quite poor; among the 12 urban agglomerations in key regions, Pearl River delta, west side of Taiwan Strait and Chengdu-Chongqing agglomerations are of relatively high carrying capacity while other agglomerations are of medium bearing capability. The assessment results imply that the existing air quality standard (GB3095-1996) is quite unsound.

关键词: air pollution index (API)     air environment bearing capability     key city     assessment method    

The convexity about ultimate bearing hypersurfaces of structures

Chengxi GUO,Tingting GUO

《结构与土木工程前沿(英文)》 2016年 第10卷 第4期   页码 456-461 doi: 10.1007/s11709-016-0334-1

摘要: The relationship between the convexity on the ultimate bearing surface of a structure and the second-order effects of loads is discussed. All of generalized non-overload forces acted on a structure forms a convex set when ignoring the second-order effects (coupling effects between the generalized forces). It is true also when the Hessian matrix composed of the second-order partial derivatives on the hypersurface about the ultimate bearing of the structure is negative definite. The outward convexity is kept when the surface is expressed by certain dimensionless parameters. A series of properties based on the convexity are pointed out. Some applications in the analysis of bearing capacity of structures were illustrated with examples. The study shows that an evaluation about the bearing capacity state of a complex structure can be made on the basis of several points on the surface of the ultimate bearing of the structure.

关键词: service     limit load     ultimate bearing surface     convexity     generalized force     generalized displacement     frame structure    

Foundations bearing capacity subjected to seepage by the kinematic approach of the limit analysis

Mehdi VEISKARAMI, Ghasem HABIBAGAHI

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 446-455 doi: 10.1007/s11709-013-0227-5

摘要: An estimate of the ultimate load on foundations on soil layers subject to groundwater flow has been presented. The kinematic approach of the limit analysis was employed to find the upper-bound limit of the bearing capacity. Both smooth and rough base strip foundations were considered associated with different collapse patterns. Presence of the groundwater flow leads to a non-symmetric collapse pattern, i.e., a weak side and a strong side in two-sided collapse patterns, depending on the direction of the flow. It was found that the bearing capacity has a decreasing trend with increase in the groundwater flow gradient and hence, a reduction factor has been introduced to the third term in the bearing capacity equation as a function of the flow gradient.

关键词: foundation     bearing capacity     limit analysis     numerical computation     plasticity     seepage    

Undrained seismic bearing capacity of strip footing adjacent to a heterogeneous excavation

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 566-583 doi: 10.1007/s11709-023-0905-x

摘要: The analysis of the bearing capacity of strip footings sited near an excavation is critical in geotechnics. In this study, the effects of the geometrical features of the excavation and the soil strength properties on the seismic bearing capacity of a strip footing resting on an excavation were evaluated using the lower and upper bounds of the finite element limit analysis method. The effects of the setback distance ratio (L/B), excavation height ratio (H/B), soil strength heterogeneity (kB/cu), and horizontal earthquake coefficient (kh) were analyzed. Design charts and tables were produced to clarify the relationship between the undrained seismic bearing capacity and the selected parameters.

关键词: excavation     finite element limit analysis     heterogeneous soil     strip footing     undrained bearing capacity    

Performance of fiber reinforced clayey sand composite

Amin CHEGENIZADEH, Hamid NIKRAZ

《结构与土木工程前沿(英文)》 2012年 第6卷 第2期   页码 147-152 doi: 10.1007/s11709-012-0158-6

摘要: Soils and their related behavior have always been the subject of many studies. Recent researches show some interests in investigation of inclusion of randomly distributed fiber in soil. This study focuses on effect of fiber inclusion on the strength and other parameters of clayey sand composite material. First part of this study is related to effective parameters on strength of the clayey sand composite with using natural fiber and plastic fiber and different fiber contents and length. Triaxial consolidated undrained (CU) tests were carried out to investigate behavior of the composite under different condition. The fiber percentage varied from 0% (for unreinforced samples) to 4% and fiber length varied from 8 to 25 mm. The fiber length and fiber content found to play important rule on the strength of fiber reinforced composite.

关键词: triaxial     consolidated undrained (CU)     fiber     strength    

Influence of the Mechanical Seals on the Dynamic Performance of Rotor–Bearing Systems

XU Hua, ZHU Jun

《机械工程前沿(英文)》 2006年 第1卷 第1期   页码 96-100 doi: 10.1007/s11465-005-0008-5

摘要:

In this paper, to consider the effects of mechanical seals, a lumped-mass model and the transfer matrix method are used to establish the equations for the dynamics performance of rotor bearing system. The general inverted iteration method is also used to solve the eigenvalue problem of these equations. To check the response of the rotor bearing system under unbalance motivation, the Gauss method is used to calculate the dynamic response of the constrained vibration. The results, based on the dynamic properties calculation of a typical mechanical spiral seal, such as stiffness coefficients and damping coefficients, exert the influence of the mechanical seal on the rotor bearing system of the high-speed machinery. Meanwhile, some structure parameters that may affect the dynamic performance and forced vibration under unbalance motivation of the rotor bearing system considering mechanical seals are analyzed in the paper. The analysis results show that the mechanical seal more or less has effects on the rotor bearing system. The mechanical seal has much more effects on the flexible rotor bearing system than on the rigid one. For instance, in a certain case, if the effects of the mechanical seal were taken into account, the system s critical speed may increase by 70 80%.

Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete

Atheer H.M. ALGBURI, M. Neaz SHEIKH, Muhammad N.S. HADI

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 998-1006 doi: 10.1007/s11709-019-0533-7

摘要: This study examines the properties of fiber-reinforced reactive powder concrete (FR-RPC). Steel fibers, glass fibers, and steel-glass hybrid fibers were used to prepare the FR-RPC. The non-fibrous reactive powder concrete (NF-RPC) was prepared as a reference mix. The proportion of fibers by volume for all FR-RPC mixes was 1.5%. Steel fibers of 13 mm length and 0.2 mm diameter were used to prepare the steel fiber-reinforced RPC (SFR-RPC). Glass fibers of 13 mm length and 1.3 mm diameter were used to prepare the glass fiber-reinforced RPC (GFR-RPC). The hybrid fiber-reinforced RPC (HFR-RPC) was prepared by mixing 0.9% steel fibers and 0.6% glass fibers. Compressive strength, axial load-axial deformation behavior, modulus of elasticity, indirect tensile strength, and shear strength of the RPC mixes were investigated. The results showed that SFR-RPC achieved higher compressive strength, indirect tensile strength and shear strength than NF-RPC, GFR-RPC, and HFR-RPC. Although the compressive strengths of GFR-RPC and HFR-RPC were slightly lower than the compressive strength of NF-RPC, the shear strengths of GFR-RPC and HFR-RPC were higher than that of NF-RPC.

关键词: reactive powder concrete     steel fiber     glass fiber     hybrid fiber    

Ultimate bearing capacity of strip footing resting on clay soil mixed with tire-derived aggregates

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1016-1024 doi: 10.1007/s11709-021-0751-7

摘要: This study investigated the use of recycled tire-derived aggregate (TDA) mixed with kaolin as a method of increasing the ultimate bearing capacity ( UBC) of a strip footing. Thirteen 1g physical modeling tests were prepared in a rigid box of 0.6 m × 0.9 m in plan and 0.6 m in height. During sample preparation, 0%, 20%, 40%, or 60% (by weight) of powdery, shredded, small-sized granular (G 1–4 mm) or large-sized granular (G 5–8 mm) TDA was mixed with the kaolin. A strip footing was then placed on the stabilized kaolin and was caused to fail under stress-controlled conditions to determine the UBC. A rigorous 3D finite element analysis was developed in Optum G-3 to determine the UBC values based on the experimental test results. The experimental results showed that, except for the 20% powdery TDA, the TDA showed an increase in the UBC of the strip footing. When kaolin mixed with 20% G (5–8 mm), the UBC showed a threefold increase over that for the unreinforced case. The test with 20% G (1–4 mm) recorded the highest subgrade modulus. It was observed that the UBC calculated using finite element modeling overestimated the experimental UBC by an average of 9%.

关键词: kaolin     physical modeling tests     stabilization     numerical modeling    

Temperature control of transfer roller’s bearing based on finite element analysis

Peng ZHANG, Yourong LI, Han XIAO

《机械工程前沿(英文)》 2009年 第4卷 第2期   页码 215-218 doi: 10.1007/s11465-009-0026-9

摘要: After a heat preservation cover is installed on the main rolling line, the heat dissipation environment of the transfer roller working on the heat preservation cover is changed. To ensure the normal production, a reasonable working jet capacity of the roller neck is derived. First, a globe model of the transfer roller is built for finite element analysis. Second, the sub-model of the fixed end bearing is built and the boundary condition of the sub-model is supplied by the results of the globe model. The analysis result of the sub-model shows that the temperature of the transfer roller bearing exceeds 85°C a rolling periodicity later. With finite element analysis, the heat flux is obtained and the minimum working jet capacity is derived.

关键词: transfer roller bearing     finite element analysis     sub-model     temperature control    

标题 作者 时间 类型 操作

Experimental analysis on strength and failure modes of wood beam-column connections

Zhenhua HUANG,Sheldon Q SHI,Liping CAI

期刊论文

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

期刊论文

钢纤维混凝土厚承台承载力影响因素分析

孙成访,谷倩,陈习子,彭少民

期刊论文

The influence of hand hole on the ultimate strength and crack pattern of shield tunnel segment joints by scaled model test

Shaochun WANG, Xi JIANG, Yun BAI

期刊论文

Iterative HOEO fusion strategy: a promising tool for enhancing bearing fault feature

期刊论文

New analysis model for rotor-bearing systems based on plate theory

Zhinan ZHANG, Mingdong ZHOU, Weimin DING, Huifang MA

期刊论文

API-based assessment on urban air environment bearing capability in China

Jinnan WANG,Jing ZHANG,Hongqiang JIANG,Yaling LU

期刊论文

The convexity about ultimate bearing hypersurfaces of structures

Chengxi GUO,Tingting GUO

期刊论文

Foundations bearing capacity subjected to seepage by the kinematic approach of the limit analysis

Mehdi VEISKARAMI, Ghasem HABIBAGAHI

期刊论文

Undrained seismic bearing capacity of strip footing adjacent to a heterogeneous excavation

期刊论文

Performance of fiber reinforced clayey sand composite

Amin CHEGENIZADEH, Hamid NIKRAZ

期刊论文

Influence of the Mechanical Seals on the Dynamic Performance of Rotor–Bearing Systems

XU Hua, ZHU Jun

期刊论文

Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete

Atheer H.M. ALGBURI, M. Neaz SHEIKH, Muhammad N.S. HADI

期刊论文

Ultimate bearing capacity of strip footing resting on clay soil mixed with tire-derived aggregates

期刊论文

Temperature control of transfer roller’s bearing based on finite element analysis

Peng ZHANG, Yourong LI, Han XIAO

期刊论文