资源类型

期刊论文 124

会议视频 2

年份

2023 12

2022 5

2021 8

2020 2

2019 3

2018 6

2017 13

2016 14

2015 4

2014 3

2013 6

2012 5

2011 3

2010 6

2009 3

2008 5

2007 11

2006 2

2005 1

2004 3

展开 ︾

关键词

原子力显微镜 4

发展战略 4

技术预见 3

力常数 2

对策建议 2

战略研究 2

波浪力 2

海洋工程 2

混凝土 2

键能 2

键长 2

2035年 1

360°表征 1

Casimir力 1

Lorentz 1

PPWS 1

三星一线 1

三点弯曲梁 1

三维原子力显微镜 1

展开 ︾

检索范围:

排序: 展示方式:

Modeling limit force capacities of high force to volume lead extrusion dampers

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 609-622 doi: 10.1007/s11709-021-0724-x

摘要: Lead extrusion dampers are supplemental energy-dissipation devices that are used to mitigate seismic structural damage. Small volumetric sizes and high force capacities define high-force-to-volume (HF2V) devices, which can absorb significant response energy without sacrificial damage. However, the design of such devices for specific force capacities has proven difficult based on the complexities of their internal reaction mechanisms, leading to the adoption of empirical approaches. This study developed upper- and lower-bound force capacity estimates from analytical mechanics based on direct and indirect metal extrusion for guiding design. The derived equations are strictly functions of HF2V device geometric parameters, lead material properties, and extrusion mechanics. The upper-bound estimates from direct and indirect extrusion are denoted as (FUB,1, FUB,2) and (FUB,3, FUB,4), respectively, and the lower-bound estimates are denoted as (FLB, FLB,1) based on the combination of extrusion and friction forces. The proposed models were validated by comparing the predicted bounds to experimental force capacity data from 15 experimental HF2V device tests. The experimental device forces all lie above the lower-bound estimates (FLB, FLB,1) and below the upper-bound estimates (FUB,1, FUB,2, FUB,4). Overall, the (FLB, FUB,2) pair provides wider bounds and the (FLB,1, FUB,4/FUB,1) pair provides narrower bounds. The (FLB,1, FUB,1) pair has a mean lower-bound gap of 36%, meaning the lower bound was 74% of the actual device force on average. The mean upper-bound gap was 33%. The bulge area and cylinder diameter of HF2V devices are key parameters affecting device forces. These relatively tight bounds provide useful mechanics-based predictive design guides for ensuring that device forces are within the targeted design range after manufacturing.

关键词: extrusion     lead dampers     upper and lower bound     analytical modelling     limit force    

Quality control based on electrode displacement and force in resistance spot welding

Chuntao JI, Lipeng DENG

《机械工程前沿(英文)》 2010年 第5卷 第4期   页码 412-417 doi: 10.1007/s11465-010-0114-x

摘要: The behaviors of electrode displacement and force during spot welding under various conditions, such as different weld currents, electrode forces, and welding times, were studied. Tests were conducted on a 170?kVA MFDC spot welder. Data were collected via a multichannel high-speed data acquisition system and were analyzed with MATLAB. Behaviors of 5182 aluminum and mild steel in spot welding were compared. Results show that nugget expansion rate does not reach zero for aluminium as it does for mild steel as nugget grew to a certain size. A linear relationship is found between the nugget size and maximum expansion that facilitates online weld quality evaluation. An electrode force peak is observed and believed relevant to the sufficient nugget size.

关键词: aluminum     electrode displacement     electrode force     nugget size     data acquisition    

Visualization of force networks in 2D dense granular materials

Jianguo LIU, Qicheng SUN, Feng JIN,

《结构与土木工程前沿(英文)》 2010年 第4卷 第1期   页码 109-115 doi: 10.1007/s11709-010-0003-8

摘要: Dense granular matter is a conglomeration of discrete solid and closely packed particles. As subjected to external loadings, the stress is largely transmitted by heavily stressed chains of particles forming a sparse network of larger contact forces. To understand the structure and evolution of force chains, a photoelastic technique was improved for determining stresses and strains in the assemblies of photoelastic granular disks in this paper. A two-dimensional vertical slab was designed. It contains 7200 polydispersed photoelastic disks and is subjected to a localized probe penetrating at the top of the slab to mimic the cone penetration test. The interparticle contact force distribution was found a peak around the mean value, a roughly exponential tail for greater force and a dip toward zero for smaller force. The force chain network around the probe tip was depicted, and the contact angle distribution of particles in force chains was found to be well aligned in the directions of major principal stress.

关键词: granular matter     force chain     multiscale modeling    

Motion/force transmission indices of parallel manipulators

Xinjun LIU, Chao WU, Fugui XIE

《机械工程前沿(英文)》 2011年 第6卷 第1期   页码 89-91 doi: 10.1007/s11465-011-0215-1

Applications of atomic force microscopy in immunology

Jiping Li, Yuying Liu, Yidong Yuan, Bo Huang

《医学前沿(英文)》 2021年 第15卷 第1期   页码 43-52 doi: 10.1007/s11684-020-0769-6

摘要: Cellular mechanics, a major regulating factor of cellular architecture and biological functions, responds to intrinsic stresses and extrinsic forces exerted by other cells and the extracellular matrix in the microenvironment. Cellular mechanics also acts as a fundamental mediator in complicated immune responses, such as cell migration, immune cell activation, and pathogen clearance. The principle of atomic force microscopy (AFM) and its three running modes are introduced for the mechanical characterization of living cells. The peak force tapping mode provides the most delicate and desirable virtues to collect high-resolution images of morphology and force curves. For a concrete description of AFM capabilities, three AFM applications are discussed. These applications include the dynamic progress of a neutrophil-extracellular-trap release by neutrophils, the immunological functions of macrophages, and the membrane pore formation mediated by perforin, streptolysin O, gasdermin D, or membrane attack complex.

关键词: cellular mechanics     atomic force microscopy     neutrophil extracellular trap     macrophage phagocytosis     pore formation    

Non-convex sparse optimization-based impact force identification with limited vibration measurements

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0762-2

摘要: Impact force identification is important for structure health monitoring especially in applications involving composite structures. Different from the traditional direct measurement method, the impact force identification technique is more cost effective and feasible because it only requires a few sensors to capture the system response and infer the information about the applied forces. This technique enables the acquisition of impact locations and time histories of forces, aiding in the rapid assessment of potentially damaged areas and the extent of the damage. As a typical inverse problem, impact force reconstruction and localization is a challenging task, which has led to the development of numerous methods aimed at obtaining stable solutions. The classical 2 regularization method often struggles to generate sparse solutions. When solving the under-determined problem, 2 regularization often identifies false forces in non-loaded regions, interfering with the accurate identification of the true impact locations. The popular 1 sparse regularization, while promoting sparsity, underestimates the amplitude of impact forces, resulting in biased estimations. To alleviate such limitations, a novel non-convex sparse regularization method that uses the non-convex 12 penalty, which is the difference of the 1 and 2 norms, as a regularizer, is proposed in this paper. The principle of alternating direction method of multipliers (ADMM) is introduced to tackle the non-convex model by facilitating the decomposition of the complex original problem into easily solvable subproblems. The proposed method named 12-ADMM is applied to solve the impact force identification problem with unknown force locations, which can realize simultaneous impact localization and time history reconstruction with an under-determined, sparse sensor configuration. Simulations and experiments are performed on a composite plate to verify the identification accuracy and robustness with respect to the noise of the 12-ADMM method. Results indicate that compared with other existing regularization methods, the 12-ADMM method can simultaneously reconstruct and localize impact forces more accurately, facilitating sparser solutions, and yielding more accurate results.

关键词: impact force identification     inverse problem     sparse regularization     under-determined condition     alternating direction method of multipliers    

Shape and topology optimization for tailoring the ratio between two flexural eigenfrequencies of atomic force

Qi XIA,Tao ZHOU,Michael Yu WANG,Tielin SHI

《机械工程前沿(英文)》 2014年 第9卷 第1期   页码 50-57 doi: 10.1007/s11465-014-0286-x

摘要:

In an operation mode of atomic force microscopy that uses a higher eigenmode to determine the physical properties of material surface, the ratio between the eigenfrequency of a higher flexural eigenmode and that of the first flexural eigenmode was identified as an important parameter that affects the sensitivity and accessibility. Structure features such as cut-out are often used to tune the ratio of eigenfrequencies and to enhance the performance. However, there lacks a systematic and automatic method for tailoring the ratio. In order to deal with this issue, a shape and topology optimization problem is formulated, where the ratio between two eigenfrequencies is defined as a constraint and the area of the cantilever is maximized. The optimization problem is solved via the level set based method.

关键词: atomic force microscopy     cantilever probe     eigenfrequency     optimization    

on PVDF ultrafiltration membrane fouling behavior under different pH conditions: interface adhesion force

Xudong WANG,Miao ZHOU,Xiaorong MENG,Lei WANG,Danxi HUANG

《环境科学与工程前沿(英文)》 2016年 第10卷 第4期 doi: 10.1007/s11783-016-0855-9

摘要: pH values of the BSA solution significantly impact the process of membrane fouling. Dramatic flux decline is caused by membrane–BSA adhesion force at start of filtration. XDLVO theory shows the polar or Lewis acid–base interaction plays a major role in membrane fouling. To further determine the fouling behavior of bovine serum albumin (BSA) on different hydrophilic PVDF ultrafiltration (UF) membranes over a range of pH values, self-made atomic force microscopy (AFM) colloidal probes were used to detect the adhesion forces of membrane–BSA and BSA–BSA, respectively. Results showed that the membrane–BSA adhesion interaction was stronger than the BSA–BSA adhesion interaction, and the adhesion force between BSA–BSA-fouled PVDF/PVA membranes was similar to that between BSA–BSA-fouled PVDF/PVP membranes, which indicated that the fouling was mainly caused by the adhesion interaction between membrane and BSA. At the same pH condition, the PVDF/PVA membrane–BSA adhesion force was smaller than that of PVDF/PVP membrane–BSA, which illustrated that the more hydrophilic the membrane was, the better antifouling ability it had. The extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory predicts that the polar or Lewis acid–base (AB) interaction played a dominant role in the interfacial free energy of membrane–BSA and BSA–BSA that can be affected by pH. For the same membrane, the pH values of a BSA solution can have a significant impact on the process of membrane fouling by changing the AB component of free energy.

关键词: PVDF membrane     Membrane fouling     Adhesion force     Protein     Interfacial free energy    

Nonlinear sealing force of a seawater balance valve used in an 11000-meter manned submersible

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0726-y

摘要: Balance valve is a core component of the 11000-meter manned submersible “struggle,” and its sealing performance is crucial and challenging when the maximum pressure difference is 118 MPa. The increasing sealing force improves the sealing performance and increases the system’s energy consumption at the same time. A hybrid analytical–numerical–experimental (ANE) model is proposed to obtain the minimum sealing force, ensuring no leakage at the valve port and reducing energy consumption as much as possible. The effects of roundness error, environmental pressure, and materials on the minimum sealing force are considered in the ANE model. The basic form of minimum sealing force equations is established, and the remaining unknown coefficients of the equations are obtained by the finite element method (FEM). The accuracy of the equation is evaluated by comparing the independent FEM data to the equation data. Results of the comparison show good agreement, and the difference between the independent FEM data and equation data is within 3% when the environmental pressure is 0–118 MPa. Finally, the minimum sealing force equation is applied in a balance valve to be experimented using a deep-sea simulation device. The balance valve designed through the minimum sealing force equation is leak-free in the experiment. Thus, the minimum sealing force equation is suitable for the ultrahigh pressure balance valve and has guiding significance for evaluating the sealing performance of ultrahigh pressure balance valves.

关键词: seawater balance valve     sealing performance     hybrid ANE model     FEM     minimum sealing force equation    

bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow force

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-023-0747-1

摘要: Capacitive sensors are efficient tools for biophysical force measurement, which is essential for the exploration of cellular behavior. However, attention has been rarely given on the influences of external mechanical and internal electrical interferences on capacitive sensors. In this work, a bionic swallow structure design norm was developed for mechanical decoupling, and the influences of structural parameters on mechanical behavior were fully analyzed and optimized. A bionic feather comb distribution strategy and a portable readout circuit were proposed for eliminating electrostatic interferences. Electrostatic instability was evaluated, and electrostatic decoupling performance was verified on the basis of a novel measurement method utilizing four complementary comb arrays and application-specific integrated circuit readouts. An electrostatic pulling experiment showed that the bionic swallow structure hardly moved by 0.770 nm, and the measurement error was less than 0.009% for the area-variant sensor and 1.118% for the gap-variant sensor, which can be easily compensated in readouts. The proposed sensor also exhibited high resistance against electrostatic rotation, and the resulting measurement error dropped below 0.751%. The rotation interferences were less than 0.330 nm and (1.829 × 10−7)°, which were 35 times smaller than those of the traditional differential one. Based on the proposed bionic decoupling method, the fabricated sensor exhibited overwhelming capacitive sensitivity values of 7.078 and 1.473 pF/µm for gap-variant and area-variant devices, respectively, which were the highest among the current devices. High immunity to mechanical disturbances was maintained simultaneously, i.e., less than 0.369% and 0.058% of the sensor outputs for the gap-variant and area-variant devices, respectively, indicating its great performance improvements over existing devices and feasibility in ultralow biomedical force measurement.

关键词: micro-electro-mechanical system capacitive sensor     bionics     operation instability     mechanical and electrical decoupling     biomedical force measurement    

Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0720-4

摘要: Aerospace aluminum alloy is the most used structural material for rockets, aircraft, spacecraft, and space stations. The deterioration of surface integrity of dry machining and the insufficient heat transfer capacity of minimal quantity lubrication have become the bottleneck of lubrication and heat dissipation of aerospace aluminum alloy. However, the excellent thermal conductivity and tribological properties of nanofluids are expected to fill this gap. The traditional milling force models are mainly based on empirical models and finite element simulations, which are insufficient to guide industrial manufacturing. In this study, the milling force of the integral end milling cutter is deduced by force analysis of the milling cutter element and numerical simulation. The instantaneous milling force model of the integral end milling cutter is established under the condition of dry and nanofluid minimal quantity lubrication (NMQL) based on the dual mechanism of the shear effect on the rake face of the milling cutter and the plow cutting effect on the flank surface. A single factor experiment is designed to introduce NMQL and the milling feed factor into the instantaneous milling force coefficient. The average absolute errors in the prediction of milling forces for the NMQL are 13.3%, 2.3%, and 7.6% in the x-, y-, and z-direction, respectively. Compared with the milling forces obtained by dry milling, those by NMQL decrease by 21.4%, 17.7%, and 18.5% in the x-, y-, and z-direction, respectively.

关键词: milling     force     nanofluid minimum quantity lubrication     aerospace aluminum alloy     nano biological lubricant    

Cutting Force Model for a Small-diameter Helical Milling Cutter

LI Xiwen, YANG Shuzi, YANG Mingjin, XIE Shouyong

《机械工程前沿(英文)》 2007年 第2卷 第3期   页码 272-277 doi: 10.1007/s11465-007-0047-1

摘要: In the milling process, the major flank wear land area (two-dimensional measurement for the wear) of a small-diameter milling cutter, as wear standard, can reflect actual changes of the wear land of the cutter. By analyzing the wearing characteristics of the cutter, a cutting force model based on the major flank wear land area is established. Characteristic parameters such as pressure parameter and friction parameter are calculated by substituting tested data into their corresponding equations. The cutting force model for the helical milling cutter is validated by experiments. The computational and experimental results show that the cutting force model is almost consistent with the actual cutting conditions. Thus, the cutting force model established in the research can provide a theoretical foundation for monitoring the condition of a milling process that uses a small-diameter helical milling cutter.

关键词: computational     corresponding     helical milling     theoretical foundation     Characteristic    

Characteristics of force acting on adjustable axial flow pump blade

WEI Peiru, CHEN Hongxun, LU Wei

《能源前沿(英文)》 2008年 第2卷 第4期   页码 508-513 doi: 10.1007/s11708-008-0054-x

摘要: The internal three-dimensional turbulent flow of adjustable axial-flow pump arrangement was simulated, and the force acting on the blade surface was calculated under different operating conditions. Based on the calculated results, finite element method (FEM) was adopted to analyze stress and strain distributions of the adjustment blade in different operations. Hydraulic moment, centrifugal moment and friction moment which must be conquered by adjusting the blades were also calculated.

关键词: three-dimensional     adjustable axial-flow     calculated     FEM     centrifugal    

Dependence of error sensitivity of frequency on bias voltage in force-balanced micro accelerometer

Lili CHEN, Wu ZHOU

《机械工程前沿(英文)》 2013年 第8卷 第2期   页码 146-149 doi: 10.1007/s11465-013-0260-z

摘要:

To predict more precisely the frequency of force-balanced micro accelerometer with different bias voltages, the effects of bias voltages on error sensitivity of frequency is studied. The resonance frequency of accelerometer under closed loop control is derived according to its operation principle, and its error sensitivity is derived and analyzed under over etching structure according to the characteristics of Deep Reaction Ion Etching (DRIE). Based on the theoretical results, micro accelerometer is fabricated and tested to study the influences of AC bias voltage and DC bias voltage on sensitivity, respectively. Experimental results indicate that the relative errors between test data and theory data are less than 7%, and the fluctuating value of error sensitivity under the range of voltage adjustment is less than 0.01 μm . It is concluded that the error sensitivity with designed parameters of structure, circuit and process error can be used to predict the frequency of accelerometer with no need to consider the influence of bias voltage.

关键词: Micro-Electro-Mechanical Systems (MEMS)     micro accelerometer     force-balanced micro accelerometer     frequency     error sensitivity    

Experimental study of the restoring force mechanism in the self-centering beam (SCB)

Abhilasha MAURYA,Matthew R. EATHERTON

《结构与土木工程前沿(英文)》 2016年 第10卷 第3期   页码 272-282 doi: 10.1007/s11709-016-0346-x

摘要: In the past, several self-centering (SC) seismic systems have been developed. However, examples of self-centering systems used in practice are limited due to unusual field construction practices, high initial cost premiums and deformation incompatibility with the gravity framing. A self centering beam moment frame (SCB-MF) has been developed that mitigates several of these issues while adding to the advantages of a typical SC system. The self-centering beam (SCB) is a shop-fabricated, self-contained structural component that when implemented in a moment resisting frame can bring a building back to plumb after an earthquake. This paper describes the SCB concepts and experimental program on five SCB specimens at two-third scale relative to a prototype building. Experimental results are presented including the global force-deformation behavior. The SCBs are shown to undergo 5%–6% story drift without any observable damage to the SCB body and columns. Strength equations developed for the SCB predict the moment capacity well, with a mean difference of 6% between experimental and predicted capacities. The behavior of the restoring force mechanism is described. The limit states that cause a loss in system's restoring force which lead to a decrease in the self-centering capacity of the SCB-MF, are presented.

关键词: self-centering seismic system     seismic design     hysteretic behavior     restoring force     resilient structural system    

标题 作者 时间 类型 操作

Modeling limit force capacities of high force to volume lead extrusion dampers

期刊论文

Quality control based on electrode displacement and force in resistance spot welding

Chuntao JI, Lipeng DENG

期刊论文

Visualization of force networks in 2D dense granular materials

Jianguo LIU, Qicheng SUN, Feng JIN,

期刊论文

Motion/force transmission indices of parallel manipulators

Xinjun LIU, Chao WU, Fugui XIE

期刊论文

Applications of atomic force microscopy in immunology

Jiping Li, Yuying Liu, Yidong Yuan, Bo Huang

期刊论文

Non-convex sparse optimization-based impact force identification with limited vibration measurements

期刊论文

Shape and topology optimization for tailoring the ratio between two flexural eigenfrequencies of atomic force

Qi XIA,Tao ZHOU,Michael Yu WANG,Tielin SHI

期刊论文

on PVDF ultrafiltration membrane fouling behavior under different pH conditions: interface adhesion force

Xudong WANG,Miao ZHOU,Xiaorong MENG,Lei WANG,Danxi HUANG

期刊论文

Nonlinear sealing force of a seawater balance valve used in an 11000-meter manned submersible

期刊论文

bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow force

期刊论文

Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological

期刊论文

Cutting Force Model for a Small-diameter Helical Milling Cutter

LI Xiwen, YANG Shuzi, YANG Mingjin, XIE Shouyong

期刊论文

Characteristics of force acting on adjustable axial flow pump blade

WEI Peiru, CHEN Hongxun, LU Wei

期刊论文

Dependence of error sensitivity of frequency on bias voltage in force-balanced micro accelerometer

Lili CHEN, Wu ZHOU

期刊论文

Experimental study of the restoring force mechanism in the self-centering beam (SCB)

Abhilasha MAURYA,Matthew R. EATHERTON

期刊论文