资源类型

期刊论文 429

会议视频 1

年份

2024 12

2023 31

2022 25

2021 27

2020 22

2019 27

2018 20

2017 33

2016 23

2015 22

2014 25

2013 13

2012 16

2011 5

2010 11

2009 10

2008 18

2007 22

2006 22

2005 10

展开 ︾

关键词

遗传算法 21

神经网络 6

优化 4

HY-2 3

BP算法 2

人员疏散 2

人工智能 2

人工神经网络 2

信息素 2

加速遗传算法 2

反演算法 2

算法 2

3D打印 1

A*算法 1

ARM7 1

BG算法 1

BP神经网络 1

Backbone 1

CDMA 1

展开 ︾

检索范围:

排序: 展示方式:

Optimal design of steel skeletal structures using the enhanced genetic algorithm methodology

Tugrul TALASLIOGLU

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 863-889 doi: 10.1007/s11709-019-0523-9

摘要: This study concerns with the design optimization of steel skeletal structures thereby utilizing both a real-life specification provisions and ready steel profiles named hot-rolled I sections. For this purpose, the enhanced genetic algorithm methodology named EGAwMP is utilized as an optimization tool. The evolutionary search mechanism of EGAwMP is constituted on the basis of generational genetic algorithm (GGA). The exploration capacity of EGAwMP is improved in a way of dividing an entire population into sub-populations and using of a radial basis neural network for dynamically adjustment of EGAwMP’s genetic operator parameters. In order to improve the exploitation capability of EGAwMP, the proposed neural network implementation is also utilized for prediction of more accurate design variables associating with a new design strategy, design codes of which are based on the provisions of LRFD_AISC V3 specification. EGAwMP is applied to determine the real-life ready steel profiles for the optimal design of skeletal structures with 105, 200, 444, and 942 members. EGAwMP accomplishes to increase the quality degrees of optimum designations Furthermore, the importance of using the real-life steel profiles and design codes is also demonstrated. Consequently, EGAwMP is suggested as a design optimization tool for the real-life steel skeletal structures.

关键词: design optimization     genetic algorithm     multiple populations     neural network    

退火-遗传算法寻优及其实现

王英

《中国工程科学》 2008年 第10卷 第7期   页码 57-59

摘要:

分析了遗传算法及退火算法的优缺点,提出用退火算法改进遗传算法局部的最优值搜索效率低问题。退火算法与遗传算法融合后,使算法在寻优结果上更加迅速精确。通过水泥的配比工程实例,与单纯的遗传算法的结果进行对比,说明该方法是有效的。

关键词: 遗传算法     退火算法     遗传算法改进    

Optimal design of steel portal frames based on genetic algorithms

CHEN Yue, HU Kai

《结构与土木工程前沿(英文)》 2008年 第2卷 第4期   页码 318-322 doi: 10.1007/s11709-008-0055-1

摘要: As for the optimal design of steel portal frames, due to both the complexity of cross selections of beams and columns and the discreteness of design variables, it is difficult to obtain satisfactory results by traditional optimization. Based on a set of constraints of the Technical Specification for Light-weighted Steel Portal Frames of China, a genetic algorithm (GA) optimization program for portal frames, written in MATLAB code, was proposed in this paper. The graph user interface (GUI) is also developed for this optimal program, so that it can be used much more conveniently. Finally, some examples illustrate the effectiveness and efficiency of the genetic-algorithm-based optimal program.

关键词: satisfactory     genetic-algorithm-based     Technical Specification     algorithm     efficiency    

A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system usingenergy filter algorithm

Aeidapu MAHESH, Kanwarjit Singh SANDHU

《能源前沿(英文)》 2020年 第14卷 第1期   页码 139-151 doi: 10.1007/s11708-017-0484-4

摘要: In this paper, the genetic algorithm (GA) is applied to optimize a grid connected solar photovoltaic (PV)-wind-battery hybrid system using a novel energy filter algorithm. The main objective of this paper is to minimize the total cost of the hybrid system, while maintaining its reliability. Along with the reliability constraint, some of the important parameters, such as full utilization of complementary nature of PV and wind systems, fluctuations of power injected into the grid and the battery’s state of charge (SOC), have also been considered for the effective sizing of the hybrid system. A novel energy filter algorithm for smoothing the power injected into the grid has been proposed. To validate the proposed method, a detailed case study has been conducted. The results of the case study for different cases, with and without employing the energy filter algorithm, have been presented to demonstrate the effectiveness of the proposed sizing strategy.

关键词: PV-wind-battery hybrid system     size optimization     genetic algorithm    

Hybrid genetic algorithm for bi-objective resource-constrained project scheduling

Fikri KUCUKSAYACIGIL, Gündüz ULUSOY

《工程管理前沿(英文)》 2020年 第7卷 第3期   页码 426-446 doi: 10.1007/s42524-020-0100-x

摘要: In this study, we considered a bi-objective, multi-project, multi-mode resource-constrained project scheduling problem. We adopted three objective pairs as combinations of the net present value (NPV) as a financial performance measure with one of the time-based performance measures, namely, makespan ( ), mean completion time (MCT), and mean flow time (MFT) (i.e., min /max , min /max , and min /max ). We developed a hybrid non-dominated sorting genetic algorithm II (hybrid-NSGA-II) as a solution method by introducing a backward–forward pass (BFP) procedure and an injection procedure into NSGA-II. The BFP was proposed for new population generation and post-processing. Then, an injection procedure was introduced to increase diversity. The BFP and injection procedures led to improved objective functional values. The injection procedure generated a significantly high number of non-dominated solutions, thereby resulting in great diversity. An extensive computational study was performed. Results showed that hybrid-NSGA-II surpassed NSGA-II in terms of the performance metrics hypervolume, maximum spread, and the number of non-dominated solutions. Solutions were obtained for the objective pairs using hybrid-NSGA-II and three different test problem sets with specific properties. Further analysis was performed by employing cash balance, which was another financial performance measure of practical importance. Several managerial insights and extensions for further research were presented.

关键词: backward–forward scheduling     hybrid bi-objective genetic algorithm     injection procedure     maximum cash balance     multi-objective multi-project multi-mode resource-constrained project scheduling problem    

Evaluation of a novel Asymmetric Genetic Algorithm to optimize the structural design of 3D regular and

Mohammad Sadegh ES-HAGHI, Aydin SHISHEGARAN, Timon RABCZUK

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1110-1130 doi: 10.1007/s11709-020-0643-2

摘要: We propose a new algorithm, named Asymmetric Genetic Algorithm (AGA), for solving optimization problems of steel frames. The AGA consists of a developed penalty function, which helps to find the best generation of the population. The objective function is to minimize the weight of the whole steel structure under the constraint of ultimate loads defined for structural steel buildings by the American Institute of Steel Construction (AISC). Design variables are the cross-sectional areas of elements (beams and columns) that are selected from the sets of side-flange shape steel sections provided by the AISC. The finite element method (FEM) is utilized for analyzing the behavior of steel frames. A 15-storey three-bay steel planar frame is optimized by AGA in this study, which was previously optimized by algorithms such as Particle Swarm Optimization (PSO), Particle Swarm Optimizer with Passive Congregation (PSOPC), Particle Swarm Ant Colony Optimization (HPSACO), Imperialist Competitive Algorithm (ICA), and Charged System Search (CSS). The results of AGA such as total weight of the structure and number of analyses are compared with the results of these algorithms. AGA performs better in comparison to these algorithms with respect to total weight and number of analyses. In addition, five numerical examples are optimized by AGA, Genetic Algorithm (GA), and optimization modules of SAP2000, and the results of them are compared. The results show that AGA can decrease the time of analyses, the number of analyses, and the total weight of the structure. AGA decreases the total weight of regular and irregular steel frame about 11.1% and 26.4% in comparing with the optimized results of SAP2000, respectively.

关键词: optimization     steel frame     Asymmetric Genetic Algorithm     constraints of ultimate load     constraints of serviceability limits     penalty function    

Application of micro-genetic algorithm for calibration of kinetic parameters in HCCI engine combustion

HUANG Haozhong, SU Wanhua

《能源前沿(英文)》 2008年 第2卷 第1期   页码 86-92 doi: 10.1007/s11708-008-0003-8

摘要: The micro-genetic algorithm (?GA) as a highly effective optimization method, is applied to calibrate to a newly developed reduced chemical kinetic model (40 species and 62 reactions) for the homogeneous charge compression ignition (HCCI) combustion of -heptane to improve its autoignition predictions for different engine operating conditions. The seven kinetic parameters of the calibrated model are determined using a combination of the Micro-Genetic Algorithm and the SENKIN program of CHEMKIN chemical kinetics software package. Simulation results show that the autoignition predictions of the calibrated model agree better with those of the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model over the range of equivalence ratios from 0.1–1.3 and temperature from 300–3 000 K. The results of this study have demonstrated that the mGA is an effective tool to facilitate the calibration of a large number of kinetic parameters in a reduced kinetic model.

关键词: homogeneous     different     combustion     autoignition     compression    

Improved genetic algorithm and its application to determination of critical slip surface with arbitrary

LI Liang, CHI Shichun, LIN Gao, CHENG Yungming

《结构与土木工程前沿(英文)》 2008年 第2卷 第2期   页码 145-150 doi: 10.1007/s11709-008-0016-8

摘要: In order to overcome the problem of being trapped by the local minima encountered in applying the simple genetic algorithm (GA) to search the critical slip surface of the slope, an improved procedure based on the harmony search algorithm is proposed. In the searching computation, the new solutions are obtained from the whole information of the current generation. The proposed method may be applied to calculate the minimum factors of safety of two complicated soil slopes. Comparison of the results with existing examples given by other authors has shown that the proposed method is feasible for stability analysis of soil slopes.

关键词: information     algorithm     Comparison     generation     feasible    

Multi-objective optimal design of braced frames using hybrid genetic and ant colony optimization

Mehdi BABAEI,Ebrahim SANAEI

《结构与土木工程前沿(英文)》 2016年 第10卷 第4期   页码 472-480 doi: 10.1007/s11709-016-0368-4

摘要: In this article, multi-objective optimization of braced frames is investigated using a novel hybrid algorithm. Initially, the applied evolutionary algorithms, ant colony optimization (ACO) and genetic algorithm (GA) are reviewed, followed by developing the hybrid method. A dynamic hybridization of GA and ACO is proposed as a novel hybrid method which does not appear in the literature for optimal design of steel braced frames. Not only the cross section of the beams, columns and braces are considered to be the design variables, but also the topologies of the braces are taken into account as additional design variables. The hybrid algorithm explores the whole design space for optimum solutions. Weight and maximum displacement of the structure are employed as the objective functions for multi-objective optimal design. Subsequently, using the weighted sum method (WSM), the two objective problem are converted to a single objective optimization problem and the proposed hybrid genetic ant colony algorithm (HGAC) is developed for optimal design. Assuming different combination for weight coefficients, a trade-off between the two objectives are obtained in the numerical example section. To make the final decision easier for designers, related constraint is applied to obtain practical topologies. The achieved results show the capability of HGAC to find optimal topologies and sections for the elements.

关键词: multi-objective     hybrid algorithm     ant colony     genetic algorithm     displacement     weighted sum method     steel braced frames    

Prediction of falling weight deflectometer parameters using hybrid model of genetic algorithm and adaptive

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 812-826 doi: 10.1007/s11709-023-0940-7

摘要: A falling weight deflectometer is a testing device used in civil engineering to measure and evaluate the physical properties of pavements, such as the modulus of the subgrade reaction (Y1) and the elastic modulus of the slab (Y2), which are crucial for assessing the structural strength of pavements. In this study, we developed a novel hybrid artificial intelligence model, i.e., a genetic algorithm (GA)-optimized adaptive neuro-fuzzy inference system (ANFIS-GA), to predict Y1 and Y2 based on easily determined 13 parameters of rigid pavements. The performance of the novel ANFIS-GA model was compared to that of other benchmark models, namely logistic regression (LR) and radial basis function regression (RBFR) algorithms. These models were validated using standard statistical measures, namely, the coefficient of correlation (R), mean absolute error (MAE), and root mean square error (RMSE). The results indicated that the ANFIS-GA model was the best at predicting Y1 (R = 0.945) and Y2 (R = 0.887) compared to the LR and RBFR models. Therefore, the ANFIS-GA model can be used to accurately predict Y1 and Y2 based on easily measured parameters for the appropriate and rapid assessment of the quality and strength of pavements.

关键词: falling weight deflectometer     modulus of subgrade reaction     elastic modulus     metaheuristic algorithms    

combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting geneticalgorithm-II

Sunil Dhingra,Gian Bhushan,Kashyap Kumar Dubey

《机械工程前沿(英文)》 2014年 第9卷 第1期   页码 81-94 doi: 10.1007/s11465-014-0287-9

摘要:

The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NOx, unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NOx, HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NOx, HC, smoke, a multi-objective optimization problem is formulated. Non-dominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.

关键词: jatropha biodiesel     fuel properties     response surface methodology     multi-objective optimization     non-dominated sorting genetic algorithm-II    

基于蛙跳思想的量子编码遗传算法

许波,彭志平,余建平,柯文德

《中国工程科学》 2014年 第16卷 第3期   页码 108-112

摘要:

量子门旋转相位、变异概率大小的确定,是目前制约量子遗传算法效率的两个主要问题。本文提出一种基于蛙跳思想的量子编码遗传算法(QRGA),该算法采用自适应的方式对量子旋转门旋转角进行调整,并基于模糊逻辑将蛙跳的步长进行量化以指导变异概率调整,保证进化的方向性和提高算法效率,对比实验结果表明算法可以避免陷入局部最优解,并能快速收敛到全局最优解,在运行时间和解的性能上都取得了较好的效果。

关键词: 量子编码     量子遗传算法     蛙跳算法     群体智能    

Branch-pipe-routing approach for ships using improved genetic algorithm

Haiteng SUI,Wentie NIU

《机械工程前沿(英文)》 2016年 第11卷 第3期   页码 316-323 doi: 10.1007/s11465-016-0384-z

摘要:

Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into three-dimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.

关键词: branch pipe     ship industry     piping system     optimization algorithm    

基于加速遗传算法的组合证券投资决策

王硕,唐小我,曾勇

《中国工程科学》 2002年 第4卷 第9期   页码 59-62

摘要:

应用加速遗传算法解决组合证券投资决策问题,可以克服传统遗传算法的缺点:对搜索空间(优化变量空间)的大小变化适应能力差,计算量大,易出现早熟收敛,控制参数的设置技术无明确准则指导等,与已有结果相比,对协方差矩阵无正定性要求,目标函数可以推广到规模庞大,提高预测精度等优点。

关键词: 加速遗传算法     组合证券     投资决策    

Optimal design of double-layer barrel vaults using genetic and pattern search algorithms and optimized

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 378-395 doi: 10.1007/s11709-022-0899-9

摘要: This paper presents a combined method based on optimized neural networks and optimization algorithms to solve structural optimization problems. The main idea is to utilize an optimized artificial neural network (OANN) as a surrogate model to reduce the number of computations for structural analysis. First, the OANN is trained appropriately. Subsequently, the main optimization problem is solved using the OANN and a population-based algorithm. The algorithms considered in this step are the arithmetic optimization algorithm (AOA) and genetic algorithm (GA). Finally, the abovementioned problem is solved using the optimal point obtained from the previous step and the pattern search (PS) algorithm. To evaluate the performance of the proposed method, two numerical examples are considered. In the first example, the performance of two algorithms, OANN + AOA + PS and OANN + GA + PS, is investigated. Using the GA reduces the elapsed time by approximately 50% compared with using the AOA. Results show that both the OANN + GA + PS and OANN + AOA + PS algorithms perform well in solving structural optimization problems and achieve the same optimal design. However, the OANN + GA + PS algorithm requires significantly fewer function evaluations to achieve the same accuracy as the OANN + AOA + PS algorithm.

关键词: optimization     surrogate models     artificial neural network     SAP2000     genetic algorithm    

标题 作者 时间 类型 操作

Optimal design of steel skeletal structures using the enhanced genetic algorithm methodology

Tugrul TALASLIOGLU

期刊论文

退火-遗传算法寻优及其实现

王英

期刊论文

Optimal design of steel portal frames based on genetic algorithms

CHEN Yue, HU Kai

期刊论文

A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system usingenergy filter algorithm

Aeidapu MAHESH, Kanwarjit Singh SANDHU

期刊论文

Hybrid genetic algorithm for bi-objective resource-constrained project scheduling

Fikri KUCUKSAYACIGIL, Gündüz ULUSOY

期刊论文

Evaluation of a novel Asymmetric Genetic Algorithm to optimize the structural design of 3D regular and

Mohammad Sadegh ES-HAGHI, Aydin SHISHEGARAN, Timon RABCZUK

期刊论文

Application of micro-genetic algorithm for calibration of kinetic parameters in HCCI engine combustion

HUANG Haozhong, SU Wanhua

期刊论文

Improved genetic algorithm and its application to determination of critical slip surface with arbitrary

LI Liang, CHI Shichun, LIN Gao, CHENG Yungming

期刊论文

Multi-objective optimal design of braced frames using hybrid genetic and ant colony optimization

Mehdi BABAEI,Ebrahim SANAEI

期刊论文

Prediction of falling weight deflectometer parameters using hybrid model of genetic algorithm and adaptive

期刊论文

combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting geneticalgorithm-II

Sunil Dhingra,Gian Bhushan,Kashyap Kumar Dubey

期刊论文

基于蛙跳思想的量子编码遗传算法

许波,彭志平,余建平,柯文德

期刊论文

Branch-pipe-routing approach for ships using improved genetic algorithm

Haiteng SUI,Wentie NIU

期刊论文

基于加速遗传算法的组合证券投资决策

王硕,唐小我,曾勇

期刊论文

Optimal design of double-layer barrel vaults using genetic and pattern search algorithms and optimized

期刊论文