资源类型

期刊论文 52

会议视频 3

年份

2023 4

2022 7

2021 4

2020 6

2019 3

2018 5

2017 1

2016 1

2015 7

2013 1

2012 1

2011 3

2009 3

2007 2

2006 1

2005 2

2004 1

2003 1

展开 ︾

关键词

人脸建模 1

全连接神经网络 1

冶金 1

分布式优化;高性能算法;多智能体系统;机器学习问题;随机梯度 1

功率密度 1

功能梯度材料 1

医学 1

原子团簇 1

可提取比能 1

喷墨打印 1

噪声图像质量评价;噪声估计;峰度;人类视觉系统;支持向量回归 1

四元数;梯度;信号处理;最小均方算法;非线性自适应滤波;波束形成 1

固定床 1

固态非晶 1

图像分割 1

增材制造 1

复合镀层 1

多分辨率分析 1

大型植物 1

展开 ︾

检索范围:

排序: 展示方式:

prediction and optimization design of sustainable concrete based on squirrel search algorithm-extreme gradient

《结构与土木工程前沿(英文)》   页码 1310-1325 doi: 10.1007/s11709-023-0997-3

摘要: Concrete is the most commonly used construction material. However, its production leads to high carbon dioxide (CO2) emissions and energy consumption. Therefore, developing waste-substitutable concrete components is necessary. Improving the sustainability and greenness of concrete is the focus of this research. In this regard, 899 data points were collected from existing studies where cement, slag, fly ash, superplasticizer, coarse aggregate, and fine aggregate were considered potential influential factors. The complex relationship between influential factors and concrete compressive strength makes the prediction and estimation of compressive strength difficult. Instead of the traditional compressive strength test, this study combines five novel metaheuristic algorithms with extreme gradient boosting (XGB) to predict the compressive strength of green concrete based on fly ash and blast furnace slag. The intelligent prediction models were assessed using the root mean square error (RMSE), coefficient of determination (R2), mean absolute error (MAE), and variance accounted for (VAF). The results indicated that the squirrel search algorithm-extreme gradient boosting (SSA-XGB) yielded the best overall prediction performance with R2 values of 0.9930 and 0.9576, VAF values of 99.30 and 95.79, MAE values of 0.52 and 2.50, RMSE of 1.34 and 3.31 for the training and testing sets, respectively. The remaining five prediction methods yield promising results. Therefore, the developed hybrid XGB model can be introduced as an accurate and fast technique for the performance prediction of green concrete. Finally, the developed SSA-XGB considered the effects of all the input factors on the compressive strength. The ability of the model to predict the performance of concrete with unknown proportions can play a significant role in accelerating the development and application of sustainable concrete and furthering a sustainable economy.

关键词: sustainable concrete     fly ash     slay     extreme gradient boosting technique     squirrel search algorithm     parametric analysis    

Vibration analysis of nano-structure multilayered graphene sheets using modified strain gradient theory

Amir ALLAHBAKHSHI,Masih ALLAHBAKHSHI

《机械工程前沿(英文)》 2015年 第10卷 第2期   页码 187-197 doi: 10.1007/s11465-015-0339-9

摘要:

In this paper, for the first time, the modified strain gradient theory is used as a new size-dependent Kirchhoff micro-plate model to study the effect of interlayer van der Waals (vdW) force for the vibration analysis of multilayered graphene sheets (MLGSs). The model contains three material length scale parameters, which may effectively capture the size effect. The model can also degenerate into the modified couple stress plate model or the classical plate model, if two or all of the material length scale parameters are taken to be zero. After obtaining the governing equations based on modified strain gradient theory via principle of minimum potential energy, as only infinitesimal vibration is considered, the net pressure due to the vdW interaction is assumed to be linearly proportional to the deflection between two layers. To solve the governing equation subjected to the boundary conditions, the Fourier series is assumed for w=w(xy). To show the accuracy of the formulations, present results in specific cases are compared with available results in literature and a good agreement can be seen. The results indicate that the present model can predict prominent natural frequency with the reduction of structural size, especially when the plate thickness is on the same order of the material length scale parameter.

关键词: graphene     van der Waals (vdW) force     modi- fied strain gradient elasticity theory     size effect parameter    

Velocity gradient elasticity for nonlinear vibration of carbon nanotube resonators

Hamid M. SEDIGHI, Hassen M. OUAKAD

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1520-1530 doi: 10.1007/s11709-020-0672-x

摘要: In this study, for the first time, we investigate the nonlocality superimposed to the size effects on the nonlinear dynamics of an electrically actuated single-walled carbon-nanotube-based resonator. We undertake two models to capture the nanostructure nonlocal size effects: the strain and the velocity gradient theories. We use a reduced-order model based on the differential quadrature method (DQM) to discretize the governing nonlinear equation of motion and acquire a discretized-parameter nonlinear model of the system. The structural nonlinear behavior of the system assuming both strain and velocity gradient theories is investigated using the discretized model. The results suggest that nonlocal and size effects should not be neglected because they improve the prediction of corresponding dynamic amplitudes and, most importantly, the critical resonant frequencies of such nanoresonators. Neglecting these effects may impose a considerable source of error, which can be amended using more accurate modeling techniques.

关键词: velocity gradient elasticity theory     nanotube resonators     differential-quadrature method     nonlinear vibration    

Predicting shear strength of slender beams without reinforcement using hybrid gradient boosting trees

Thuy-Anh NGUYEN; Hai-Bang LY; Van Quan TRAN

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1267-1286 doi: 10.1007/s11709-022-0842-0

摘要: Shear failure of slender reinforced concrete beams without stirrups has surely been a complicated occurrence that has proven challenging to adequately understand. The primary purpose of this work is to develop machine learning models capable of reliably predicting the shear strength of non-shear-reinforced slender beams (SB). A database encompassing 1118 experimental findings from the relevant literature was compiled, containing eight distinct factors. Gradient Boosting (GB) technique was developed and evaluated in combination with three different optimization algorithms, namely Particle Swarm Optimization (PSO), Random Annealing Optimization (RA), and Simulated Annealing Optimization (SA). The findings suggested that GB-SA could deliver strong prediction results and effectively generalizes the connection between the input and output variables. Shap values and two-dimensional PDP analysis were then carried out. Engineers may use the findings in this work to define beam's geometrical components and material used to achieve the desired shear strength of SB without reinforcement.

关键词: slender beam     shear strength     gradient boosting     optimization algorithms    

Gradient-based compressive image fusion

Yang CHEN,Zheng QIN

《信息与电子工程前沿(英文)》 2015年 第16卷 第3期   页码 227-237 doi: 10.1631/FITEE.1400217

摘要: We present a novel image fusion scheme based on gradient and scrambled block Hadamard ensemble (SBHE) sampling for compressive sensing imaging. First, source images are compressed by compressive sensing, to facilitate the transmission of the sensor. In the fusion phase, the image gradient is calculated to reflect the abundance of its contour information. By compositing the gradient of each image, gradient-based weights are obtained, with which compressive sensing coefficients are achieved. Finally, inverse transformation is applied to the coefficients derived from fusion, and the fused image is obtained. Information entropy (IE), Xydeas’s and Piella’s metrics are applied as non-reference objective metrics to evaluate the fusion quality in line with different fusion schemes. In addition, different image fusion application scenarios are applied to explore the scenario adaptability of the proposed scheme. Simulation results demonstrate that the gradient-based scheme has the best performance, in terms of both subjective judgment and objective metrics. Furthermore, the gradient-based fusion scheme proposed in this paper can be applied in different fusion scenarios.

关键词: Compressive sensing (CS)     Image fusion     Gradient-based image fusion     CS-based image fusion    

Influence of freeze–thaw damage gradient on stress–strain relationship of stressed concrete

《结构与土木工程前沿(英文)》   页码 1326-1340 doi: 10.1007/s11709-023-0014-x

摘要: Influence of freeze–thaw damage gradient on stress–strain relationship of stressed concrete

关键词: strain relationship concrete    

Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and

Peiwen Liu, Carsten Mai, Kai Zhang

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 383-389 doi: 10.1007/s11705-018-1718-7

摘要:

Hydrogels with precisely designed structures represent promising materials with a broad application spectrum, such as for sensor, tissue engineering and biomimetic technology. However, with highly reactive compounds, the preparation of hydrogels still needs an efficient approach for desired distribution of each component within hydrogels. In addition, a method for in situ preparation of gradient hydrogels is still lacking. Herein, we report the formation of hydrogels with either uniform or gradient internal structures via a novel, simple but very efficient method by aerating ammonia gas (NH3 gas) into the solution of dialdehyde cellulose (DAC) and a diamine. As-prepared hydrogels exhibited uniform microscopic and chemical structure or gradient distribution of functional groups. Due to lots of aldehyde groups on DAC chains, functional hydrogels can be prepared by using diverse diamines. For instance, hydrogels prepared by using 1,6-hexanediamine as a cross-linker were responsive to pH values. Moreover, this controllable process of aerating NH3 gas allows the in situ formation of gradient hydrogels; for instance, by using cyanamide as a reaction counterpart, gradient hydrogels with gradient distributions of cyanide groups were prepared.

关键词: hydrogel     uniform     gradient     dialdehyde cellulose     ammonia gas     diamine    

A three-dimensional two-level gradient smoothing meshfree method for rainfall induced landslide simulations

Dongdong WANG, Jiarui WANG, Junchao WU, Junjun DENG, Ming SUN

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 337-352 doi: 10.1007/s11709-018-0467-5

摘要: A three-dimensional two-level gradient smoothing meshfree method is presented for rainfall induced landslide simulations. The two-level gradient smoothing for meshfree shape function is elaborated in the three-dimensional Lagrangian setting with detailed implementation procedure. It is shown that due to the successive gradient smoothing operation without the requirement of derivative computation in the present formulation, the two-level smoothed gradient of meshfree shape function is capable of achieving a given influence domain more efficiently than the standard gradient of meshfree shape function. Subsequently, the two-level smoothed gradient of meshfree shape function is employed to discretize the weak form of coupled rainfall seepage and soil motion equations in a nodal integration format, as provides an efficient three-dimensional regularized meshfree formulation for large deformation rainfall induced landslide simulations. The exponential damage and pressure dependent plasticity relationships are utilized to describe the failure evolution in landslides. The plastic response of soil is characterized by the true effective stress measure, which is updated according to the rotationally neutralized objective integration algorithm. The effectiveness of the present three-dimensional two-level gradient smoothing meshfree method is demonstrated through numerical examples.

关键词: meshfree method     landslide     rainfall     three-dimensional two-level gradient smoothing     nodal integration    

Effects of gradient concentration on the microstructure and electrochemical performance of LiNi

Wenming Li, Weijian Tang, Maoqin Qiu, Qiuge Zhang, Muhammad Irfan, Zeheng Yang, Weixin Zhang

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 988-996 doi: 10.1007/s11705-020-1918-9

摘要: Nickel(Ni)-rich layered materials have attracted considerable interests as promising cathode materials for lithium ion batteries (LIBs) owing to their higher capacities and lower cost. Nevertheless, Mn-rich cathode materials usually suffer from poor cyclability caused by the unavoidable side-reactions between Ni ions on the surface and electrolytes. The design of gradient concentration (GC) particles with Ni-rich inside and Mn-rich outside is proved to be an efficient way to address the issue. Herein, a series of LiNi Co Mn O (LNCM622) materials with different GCs (the atomic ratio of Ni/Mn decreasing from the core to the outer layer) have been successfully synthesized via rationally designed co-precipitation process. Experimental results demonstrate that the GC of LNCM622 materials plays an important role in their microstructure and electrochemical properties. The as-prepared GC3.5 cathode material with optimal GC can provide a shorter pathway for lithium-ion diffusion and stabilize the near-surface region, and finally achieve excellent electrochemical performances, delivering a discharge capacity over 176 mAh·g at 0.2 C rate and exhibiting capacity retention up to 94% after 100 cycles at 1 C. The rationally-designed co-precipitation process for fabricating the Ni-rich layered cathode materials with gradient composition lays a solid foundation for the preparation of high-performance cathode materials for LIBs.

关键词: gradient concentration     Ni-rich     LiNi0.6Co0.2-Mn0.2O2     electrochemical performance     lithium-ion battery    

Experimental investigation on possibility of oxygen enrichment by using gradient magnetic fields

CAI Jun, WANG Li, TONG Lige, SUN Shufeng, WU Ping

《化学科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 271-276 doi: 10.1007/s11705-007-0049-x

摘要: This paper presents a novel method that uses the interception effect of gradient magnetic field on oxygen molecules to realize enrichment. The use of two opposite magnetic poles of two magnets at a certain distance forms a magnetic space having a field intensity gradient near its borders. When air injected into the magnetic space outflows from the magnetic space via its borders, oxygen molecules in the air will experience the interception effect of the gradient magnetic field, but nitrogen molecules will outflow from the magnetic space without hindrance. Thus, continuous oxygen enrichment is realized. The enrichment degree of oxygen reaches 0.65% when the inlet and outlet air flows are 40 mL/min and 20 mL/min, respectively, and the gas temperature is 298 K and the maximal product of magnetic flux density and its gradient is 563 T/m (the distance between two magnetic poles is 1 mm). When the gas temperature rises to 343 K, the enrichment degree drops to 0.32%; and when the maximal product of magnetic flux density and field intensity gradient drops to 101 T/m (the distance between two magnetic poles is 4 mm), the enrichment degree drops to 0.23%. The experimental results show that there is an optimal ratio between the inlet air flow and the outlet air flow. Under the experimental conditions in this paper, the value is about 2.0. It is demonstrated that the method presented in this paper can continuously enrich oxygen and has a higher enrichment degree than other oxygen-enrichment methods using magnetic separation.

过渡区提取方法综述

刘锁兰,杨静宇

《中国工程科学》 2007年 第9卷 第9期   页码 89-96

摘要:

图像分割是图像理论发展的瓶颈, 过渡区是指图像中介于目标和背景之间的 特殊区域,借助于过渡区的确定进行图像 分割。主要介绍了过渡区提取的两大类方法 :基于梯度的方法和基于非梯度的方法, 并对提取效果以及存在的问题做了简要分析。

关键词: 过渡区     提取     图像分割     梯度法     非梯度法    

盐度差能:现状和新趋势

Olivier Schaetzle, Cees J. N. Buisman

《工程(英文)》 2015年 第1卷 第2期   页码 164-166 doi: 10.15302/J-ENG-2015046

摘要:

在本文中,我们概述了盐度梯度技术的最新发展情况。在描述最先进盐度梯度技术的发展现状之前,我们首先介绍了盐度差能概念。本文以盐度梯度技术新兴领域中的新趋势作为结尾。

关键词: 盐度差能,压力延缓渗透,反向电渗析    

金属玻璃形成过程中纳米密度梯度对结构的稳定作用 Article

周少雄, 董帮少, 王岩国, 秦敬玉, 汪卫华

《工程(英文)》 2023年 第29卷 第10期   页码 120-129 doi: 10.1016/j.eng.2023.01.010

摘要:

合金熔体急速冷却导致金属玻璃中原子的短程有序分布和结构的无序,并使金属玻璃的微观结构出现除短程序外的多种可能特征。本文利用电子断层成像和基于非晶模型的成像模拟技术表征了Zr60Cu30Al10金属玻璃中的纳米密度梯度结构,该纳米密度梯度源于按原子堆垛密度递减顺序排列的原子团簇群,并构成了不均匀的金属玻璃中程微观结构。三维重构像中由特定表面构成的大尺寸多面体与类二十面体团簇对应,同时也揭示了这些高原子堆垛密度原子团簇的空间分布情况。各种原子团簇按原子堆垛密度递减方式排列作为合金熔体玻璃化凝固过程中潜在的本征分布规律,能够起到稳定过冷熔体和金属玻璃结构的作用。

关键词: 急冷     固态非晶     密度梯度     电子断层成像     原子团簇    

基于纳米孔渗透获取盐度梯度能量发电的可行性研究 Article

王樟新, Li Wang, Menachem Elimelech

《工程(英文)》 2022年 第9卷 第2期   页码 51-60 doi: 10.1016/j.eng.2021.02.016

摘要:

随着具有离子选择性纳米通道的新型材料的研发,一种获取盐度梯度(蓝色)能量的新技术被提出,即纳米孔发电机(NPG)。在本研究中,我们对膜片尺度和组件尺度的NPG运行的实际性能进行了全面分析。结果表明,虽然NPG 膜片可以在理想条件下产生超高的功率密度,但由于浓度极化效应,实际运行中NPG膜片上产生的功率密度很难达到10 W·m−2。对于组件尺度的NPG运行,我们估算了功率密度和可提取比能(即使用单位总体积工作溶液可产生的能量),并基于浓度极化与高浓度溶液和低浓度溶液的混合程度之间的相互作用,阐明运行条件对这两个指标的影响。此外,我们还开发了一个用来评估NPG 系统可行性的模型框架。结果表明,对于使用海水与河水的NPG 系统,总可提取比能非常低(约0.1 kW·h·m−3),且受到系统运行能耗的影响(特别是海水和河水溶液的汲取与预处理能耗)。总的来说,NPG系统产生的净可提取比能(< 0.025 kW·h·m−3)和净功率密度(< 0.1 W·m−2)非常低。我们的研究重点指出了NPG在现实运行中存在极大的局限性,进而对NPG作为一种蓝色能量收集技术的可行性提出了质疑。

关键词: 纳米孔发电机     盐度梯度(蓝色)能量     功率密度     可提取比能    

Development of machine learning multi-city model for municipal solid waste generation prediction

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1551-6

摘要:

● A database of municipal solid waste (MSW) generation in China was established.

关键词: Municipal solid waste     Machine learning     Multi-cities     Gradient boost regression tree    

标题 作者 时间 类型 操作

prediction and optimization design of sustainable concrete based on squirrel search algorithm-extreme gradient

期刊论文

Vibration analysis of nano-structure multilayered graphene sheets using modified strain gradient theory

Amir ALLAHBAKHSHI,Masih ALLAHBAKHSHI

期刊论文

Velocity gradient elasticity for nonlinear vibration of carbon nanotube resonators

Hamid M. SEDIGHI, Hassen M. OUAKAD

期刊论文

Predicting shear strength of slender beams without reinforcement using hybrid gradient boosting trees

Thuy-Anh NGUYEN; Hai-Bang LY; Van Quan TRAN

期刊论文

Gradient-based compressive image fusion

Yang CHEN,Zheng QIN

期刊论文

Influence of freeze–thaw damage gradient on stress–strain relationship of stressed concrete

期刊论文

Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and

Peiwen Liu, Carsten Mai, Kai Zhang

期刊论文

A three-dimensional two-level gradient smoothing meshfree method for rainfall induced landslide simulations

Dongdong WANG, Jiarui WANG, Junchao WU, Junjun DENG, Ming SUN

期刊论文

Effects of gradient concentration on the microstructure and electrochemical performance of LiNi

Wenming Li, Weijian Tang, Maoqin Qiu, Qiuge Zhang, Muhammad Irfan, Zeheng Yang, Weixin Zhang

期刊论文

Experimental investigation on possibility of oxygen enrichment by using gradient magnetic fields

CAI Jun, WANG Li, TONG Lige, SUN Shufeng, WU Ping

期刊论文

过渡区提取方法综述

刘锁兰,杨静宇

期刊论文

盐度差能:现状和新趋势

Olivier Schaetzle, Cees J. N. Buisman

期刊论文

金属玻璃形成过程中纳米密度梯度对结构的稳定作用

周少雄, 董帮少, 王岩国, 秦敬玉, 汪卫华

期刊论文

基于纳米孔渗透获取盐度梯度能量发电的可行性研究

王樟新, Li Wang, Menachem Elimelech

期刊论文

Development of machine learning multi-city model for municipal solid waste generation prediction

期刊论文