资源类型

期刊论文 20

年份

2022 6

2021 1

2020 4

2019 1

2018 1

2016 1

2015 1

2013 1

2011 1

2009 1

2004 1

2000 1

展开 ︾

关键词

天然气水合物 3

专用技术装备 1

南海北部陆坡 1

大洋综合钻探 1

天然气水合物;勘探与试采;储量巨大;研究现状;发展战略 1

天然气水合物;开采技术;降压;固态流化;联合方法 1

开采模式 1

数学模型 1

新能源 1

注温水-降压联合开采方法 1

流动保障 1

流变仪 1

海洋天然气水合物 1

深部地球科学 1

相似准则 1

相对黏度 1

结核矿 1

连续油 1

通用技术装备 1

展开 ︾

检索范围:

排序: 展示方式:

Research progress on hydrate plugging in multiphase mixed rich-liquid transportation pipelines

Shuyu SONG, Zhiming LIU, Li ZHOU, Liyan SHANG, Yaxin WANG

《能源前沿(英文)》 2022年 第16卷 第5期   页码 774-792 doi: 10.1007/s11708-020-0688-x

摘要: The plugging mechanism of multiphase mixed rich-liquid transportation in submarine pipeline is a prerequisite for maintaining the fluid flow in the pipeline and ensuring safe fluid flow. This paper introduced the common experimental devices used to study multiphase flow, and summarized the plugging progress and mechanism in the liquid-rich system. Besides, it divided the rich-liquid phase system into an oil-based system, a partially dispersed system, and a water-based system according to the different water cuts, and discussed the mechanism of hydrate plugging. Moreover, it summarized the mechanism and the use of anti-agglomerates in different systems. Furthermore, it proposed some suggestions for future research on hydrate plugging. First, in the oil-based system, the effect factors of hydrates are combined with the mechanical properties of hydrate deposit layer, and the hydrate plugging mechanism models at inclined and elbow pipes should be established. Second, the mechanism of oil-water emulsion breaking in partially dispersed system and the reason for the migration of the oil-water interface should be analyzed, and the property of the free water layer on the hydrate plugging process should be quantified. Third, a complete model of the effect of the synergy of liquid bridge force and van der Waals force in the water-based system on the hydrate particle coalescence frequency model is needed, and the coalescence frequency model should be summarized. Next, the dynamic analysis of a multiphase mixed rich-liquid transportation pipeline should be coupled with the process of hydrate coalescence, deposition, and blockage decomposition. Finally, the effects of anti-agglomerates on the morphological evolution of hydrate under different systems and pipeline plugging conditions in different media should be further explored.

关键词: hydrate     rich-liquid phase     plugging mechanism     coalescence     deposition     anti-agglomerate    

Fundamental characteristics of gas hydrate-bearing sediments in the Shenhu area, South China Sea

Xin LYU, Qingping LI, Yang GE, Junlong ZHU, Shouwei ZHOU, Qiang FU

《能源前沿(英文)》 2021年 第15卷 第2期   页码 367-373 doi: 10.1007/s11708-020-0714-z

摘要: The basic physical properties of marine natural gas hydrate deposits are important to the understanding of seabed growth conditions, occurrence regularity, and occurrence environment of natural gas hydrates. A comprehensive analysis of the core samples of drilling pressure-holding hydrate deposits at a depth of 1310 m in the Shenhu area of the South China Sea was conducted. The experimental results indicate that the particle size in the hydrate sediment samples are mainly distributed in the range from 7.81 µm to 21.72µm, and the average particle size decreases as the depth of the burial increases. The X-ray CT analytical images and surface characteristics SEM scan images suggest that the sediment is mostly silty clay. There are a large number of bioplastics in the sediment, and the crack inside the core may be areas of hydrate formation.

关键词: natural gas hydrate     Shenhu area     reservoirs characteristics    

Progress in use of surfactant in nearly static conditions in natural gas hydrate formation

Zhen PAN, Yi WU, Liyan SHANG, Li ZHOU, Zhien ZHANG

《能源前沿(英文)》 2020年 第14卷 第3期   页码 463-481 doi: 10.1007/s11708-020-0675-2

摘要: Natural gas hydrate is an alternative energy source with a great potential for development. The addition of surfactants has been found to have practical implications on the acceleration of hydrate formation in the industrial sector. In this paper, the mechanisms of different surfactants that have been reported to promote hydrate formation are summarized. Besides, the factors influencing surfactant-promoted hydrate formation, including the type, concentration, and structure of the surfactant, are also described. Moreover, the effects of surfactants on the formation of hydrate in pure water, brine, porous media, and systems containing multiple surfactants are discussed. The synergistic or inhibitory effects of the combinations of these additives are also analyzed. Furthermore, the process of establishing kinetic and thermodynamic models to simulate the factors affecting the formation of hydrate in surfactant-containing solutions is illustrated and summarized.

关键词: gas hydrate     kinetic hydrate promoter     compounding     model     surfactant     mechanism    

Impacts of CO2 and H2S on the risk of hydrate formation during pipeline transport of natural gas

Solomon A. Aromada, Bjørn Kvamme

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 616-627 doi: 10.1007/s11705-019-1795-2

摘要: Evaluation of maximum content of water in natural gas before water condenses out at a given temperature and pressure is the initial step in hydrate risk analysis during pipeline transport of natural gas. The impacts of CO and H S in natural gas on the maximum mole-fractions of water that can be tolerated during pipeline transport without the risk of hydrate nucleation has been studied using our novel thermodynamic scheme. Troll gas from the North Sea is used as a reference case, it contains very negligible amount of CO and no H S. Varying mole-fractions of CO and H S were introduced into the Troll gas, and the effects these inorganic impurities on the water tolerance of the system were evaluated. It is observed that CO does not cause any distinguishable impact on water tolerance of the system, but H S does. Water tolerance decreases with increase in concentration of H S. The impact of ethane on the system was also investigated. The maximum mole-fraction of water permitted in the gas to ensure prevention of hydrate formation also decreases with increase in the concentration of C H like H S. H S has the most impact, it tolerates the least amount of water among the components studied.

关键词: hydrate     hydrogen Sulphide     CO2     dew point     pipeline    

in numerical simulations on multiphase flow and thermodynamics in production of natural gas from gas hydrate

Lin ZUO, Lixia SUN, Changfu YOU

《能源前沿(英文)》 2009年 第3卷 第2期   页码 152-159 doi: 10.1007/s11708-009-0017-x

摘要: Natural gas hydrates are promising potential alternative energy resources. Some studies on the multiphase flow and thermodynamics have been conducted to investigate the feasibility of gas production from hydrate dissociation. The methods for natural gas production are analyzed and several models describing the dissociation process are listed and compared. Two prevailing models, one for depressurization and the other for thermal stimulation, are discussed in detail. A comprehensive numerical method considering the multiphase flow and thermodynamics of gas production from various hydrate-bearing reservoirs is required to better understand the dissociation process of natural gas hydrate, which would be of great benefit to its future exploration and exploitation.

关键词: numerical simulation     natural gas hydrate     dissociation     thermodynamics     multiphase flow    

Efficient promotion of methane hydrate formation and elimination of foam generation using fluorinated

Quan CAO, Dongyan XU, Huanfei XU, Shengjun LUO, Rongbo GUO

《能源前沿(英文)》 2020年 第14卷 第3期   页码 443-451 doi: 10.1007/s11708-020-0683-2

摘要: Methane hydrate preparation is an effective method to store and transport methane. In promoters to facilitate methane hydrate formation, homogeneous surfactant solutions, sodium dodecyl sulfate (SDS) in particular, are more favorable than heterogeneous particles, thanks to their faster reaction rate, more storage capacity, and higher stability. Foaming, however, could not be avoided during hydrate dissociation with the presence of SDS. This paper investigated the ability of five fluorinated surfactants: potassium perfluorobutane sulfonate (PBS), potassium perfluorohexyl sulfonate (PHS), potassium perfluorooctane sulfonate (POS), ammonium perfluorooctane sulfonate (AOS), and tetraethylammonium perfluorooctyl sulfonate (TOS) to promote methane hydrate formation. It was found that both PBS and PHS achieve a storage capacity of 150 ( , the volume of methane that can be stored by one volume of water) within 30 min, more than that of SDS. Cationic ions and the carbon chain length were then discussed on their effects during the formation. It was concluded that PBS, PHS, and POS produced no foam during hydrate dissociation, making them promising promoters in large-scale application.

关键词: methane hydrate     fluorinated surfactants     homogeneous promoter     foam elimination     stability    

Progress and prospect of hydrate-based desalination technology

Jibao ZHANG, Shujun CHEN, Ning MAO, Tianbiao HE

《能源前沿(英文)》 2022年 第16卷 第3期   页码 445-459 doi: 10.1007/s11708-021-0740-5

摘要: With the continuous growth of the population and the improvement of production, the shortage of freshwater has plagued many countries. The use of novel technologies such as desalination to produce fresh water on a large scale has become inevitable in the world. Hydrate-based desalination (HBD) technology has drawn an increasing amount of attention due to its mild operation condition and environmental friendliness. In this paper, literature on hydrate-based desalination is comprehensively analyzed and critically evaluated, focuses on experimental progress in different hydrate formers that have an impact on thermodynamics and dynamics in hydrate formation. Besides, various porous media promotion is investigated. Besides, the hydrate formation morphology and hydrate crystal structure with different hydrate formers are analyzed and compared. Moreover, molecular dynamic simulation is discussed to further understand microscopic information of hydrate formation. Furthermore, simulations of the HBD process by considering the energy consumption are also investigated. In conclusion, the hydrated based desalination is a potential technology to get fresh water in a sustainable way.

关键词: gas hydrates     desalination     crystal morphology     molecular dynamic     cold energy    

Analysis of physical properties of gas hydrate-bearing unconsolidated sediment samples from the ultra-deepwater

《能源前沿(英文)》 2022年 第16卷 第3期   页码 509-520 doi: 10.1007/s11708-021-0786-4

摘要: Marine natural gas hydrate has recently attracted global attention as a potential new clean energy source. Laboratory measurements of various physical properties of gas hydrate-bearing marine sediments can provide valuable information for developing efficient and safe extraction technology of natural gas hydrates. This study presents comprehensive measurement results and analysis of drilled hydrate-bearing sediments samples recovered from Qiongdongnan Basin in the South China Sea. The results show that the gas hydrate in the core samples is mainly methane hydrate with a methane content of approximately 95%, and the other components are ethane and carbon dioxide. The saturation of the samples fluctuates from 2%–60%, the porosity is approximately 38%–43%, and the water content is approximately 30%–50%, which indicate that high water saturation means that timely drainage should be paid attention to during hydrate extraction. In addition, the median diameter of the sediment samples is mainly distributed in the range of 15 to 34 μm, and attention should be paid to the prevention and control of sand production in the mining process. Moreover, the thermal conductivity is distributed in the range of 0.75 to 0.96 W/(m∙K) as measured by the flat plate heat source method. The relatively low thermal conductivity of hydrates at this study site indicates that a combined approach is encouraged for natural gas production technologies. It is also found that clay flakes and fine particles are attached to the surface of large particles in large numbers. Such characteristics will lead to insufficient permeability during the production process.

关键词: natural gas hydrates     physical properties analysis     hydrate-bearing sediments    

Key issues in development of offshore natural gas hydrate

Shouwei ZHOU, Qingping LI, Xin LV, Qiang FU, Junlong ZHU

《能源前沿(英文)》 2020年 第14卷 第3期   页码 433-442 doi: 10.1007/s11708-020-0684-1

摘要: As a new clean energy resource in the 21st century, natural gas hydrate is considered as one of the most promising strategic resources in the future. This paper, based on the research progress in exploitation of natural gas hydrate (NGH) in China and the world, systematically reviewed and discussed the key issues in development of natural gas hydrate. From an exploitation point of view, it is recommended that the concepts of diagenetic hydrate and non-diagenetic hydrate be introduced. The main factors to be considered are whether diagenesis, stability of rock skeleton structure, particle size and cementation mode, thus NGHs are divided into 6 levels and used unused exploitation methods according to different types. The study of the description and quantitative characterization of abundance in hydrate enrichment zone, and looking for gas hydrate dessert areas with commercial exploitation value should be enhanced. The concept of dynamic permeability and characterization of the permeability of NGH by time-varying equations should be established. The ‘Three-gas co-production’ (natural gas hydrate, shallow gas, and conventional gas) may be an effective way to achieve early commercial exploitation. Although great progress has been made in the exploitation of natural gas hydrate, there still exist enormous challenges in basic theory research, production methods, and equipment and operation modes. Only through hard and persistent exploration and innovation can natural gas hydrate be truly commercially developed on a large scale and contribute to sustainable energy supply.

关键词: natural gas hydrate exploitation offshore     diagenetic and non-diagenetic hydrate     solid-state fluidization method     dessert in enrichment area     three-gas combined production on gas hydrate abundance    

Mechanism and control factors of hydrate plugging in multiphase liquid-rich pipeline flow systems: a

Shuwei ZHANG, Liyan SHANG, Zhen PAN, Li ZHOU, You GUO

《能源前沿(英文)》 2022年 第16卷 第5期   页码 747-773 doi: 10.1007/s11708-022-0830-z

摘要: There is nothing illogical in the concept that hydrates are easily formed in oil and gas pipelines owing to the low-temperature and high-pressure environment, although requiring the cooperation of flow rate, water content, gas-liquid ratio, and other specific factors. Therefore, hydrate plugging is a major concern for the hydrate slurry pipeline transportation technology. In order to further examine potential mechanisms underlying these processes, the present paper listed and analyzed the significant research efforts specializing in the mechanisms of hydrate blockages in the liquid-rich system, including oil-based, water-based, and partially dispersed systems (PD systems), in gathering and transportation pipelines. In addition, it summarized the influences of fluid flow and water content on the risk of hydrate blockage and discussed. In general, flow rate was implicated in the regulation of blockage risk through its characteristic to affect sedimentation tendencies and flow patterns. Increasing water content can potentiate the growth of hydrates and change the oil-water dispersion degree, which causes a transition from completely dispersed systems to PD systems with a higher risk of clogging. Reasons of diversity of hydrate plugging mechanism in oil-based system ought to be studied in-depth by combining the discrepancy of water content and the microscopic characteristics of hydrate particles. At present, it is increasingly necessary to expand the application of the hydrate blockage formation prediction model in order to ensure that hydrate slurry mixed transportation technology can be more maturely applied to the natural gas industry transportation field.

关键词: hydrate     flow rate     water content     mechanism of pipeline blockage     rich liquid phase system    

天然气水合物——未来的新能源

金庆焕

《中国工程科学》 2000年 第2卷 第11期   页码 29-34

摘要:

现有资料表明,全球石油和天然气的后备资源还能维持40余年,因此科技专家将天然气水合物列为未来的新能源。在世界各海域目前已发现天然气水合物矿区82处,据地质学家估算,各海区天然气水合物中甲烷的碳总量是全球所有石油、天然气和煤的碳总量的2倍。

广州海洋地质局对南海北部陆坡区开展了天然气水合物的调査,高分辨率地震调査资料显示,在南海北部陆坡区存在天然气水合物明显的地球物理标志。

关键词: 天然气水合物     新能源     南海北部陆坡    

Dual-functional sites for synergistic adsorption of Cr(VI) and Sb(V) by polyaniline-TiO hydrate: Adsorption

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1526-7

摘要:

• PANI/Ti(OH)n(4n)+ exhibited excellent adsorption capacity and reusability.

关键词: Polyaniline/TiO2     Chromium     Antimony     Adsorption     Desorption     Mechanism    

海洋天然气水合物藏开采若干问题研究

白玉湖,李清平

《中国工程科学》 2011年 第13卷 第5期   页码 103-112

摘要:

文章阐述了在开采天然气水合物方面所取得的研究进展,包括天然气水合物开采模型及数值模拟,天然气水合物开采物理模拟相似准则,天然气水合物开采方法研究等。建立、完善了天然气水合物开采的数学模型,并以此为基础建立了降压开采水合物物理模拟相似准则。降压法开采单一水合物藏,在某些情况下开采能量不足会导致藏内结冰严重。对下伏气的天然气水合物藏而言,水合物能够提高产气量、延长稳产时间。结合降压和注热的优势提出了注温水-降压法联合开采方法,该方法具有稳产时间较长、稳产气速度高的特点。

关键词: 天然气水合物     降压法     注温水-降压联合开采方法     数学模型     相似准则    

海洋天然气水合物开采技术与装备发展研究

付强,王国荣,周守为,钟林,王雷振

《中国工程科学》 2020年 第22卷 第6期   页码 32-39 doi: 10.15302/J-SSCAE-2020.06.005

摘要:

天然气水合物尤其是海洋天然气水合物是有望替代传统化石能源的一种新型清洁非常规能源,全球储量丰富,目前对其开采仍处于研究阶段,商业化、规模化开采面临诸多技术与装备挑战。本文针对现有水合物开采方法,围绕日本和我国的海洋天然气试采工程案例,对降压和固态流化法两种试采模式涉及的关键技术和工艺进行了分析;综合国内外相关技术与装备的发展现状,提出了适合我国储层与装备技术的海洋天然气水合物开采的发展思路及对策建议。研究发现,在以深海采矿车、疏松浅表层双梯度钻井技术等为代表,用于水合物 – 油气 – 海底金属矿开采的通用关键技术装备领域,我国的整体水平落后于国外;在以防砂技术装备、浅层水合物开采的预斜导向钻进技术、“三气合采”技术装备等为代表的专用关键技术装备领域,我国综合水平与国际先进水平相当,但仍然距商业化开采技术装备需求较远。面向 2035 年,我国海洋天然气水合物开采技术与装备发展的战略目标为进入全面领跑阶段,建立商业化开发的工程装备体系。研究建议,从国家层面制定海洋天然气水合物开发技术与装备研发计划,推动水合物的商业化开发进程,开展海洋非成岩水合物开采专用和通用技术装备的研发及应用。

关键词: 海洋天然气水合物     开采模式     通用技术装备     专用技术装备    

天然气水合物资源勘探与试采技术研究现状与发展战略

付强,周守为,李清平

《中国工程科学》 2015年 第17卷 第9期   页码 123-132

摘要:

天然气水合物是甲烷等烃类气体与水在高压低温条件下形成的笼形化合物,俗称可燃冰,将有望成为继页岩气、致密气、煤层气、油砂等之后的储量最为巨大的接替能源,主要分布在北极冻土带和沿海大陆架300~3000 m水深的深水区,初步估计其资源量为全球含碳化合物的两倍,其中约95 %储存在深海区域;与此同时,深水浅层弱胶结水合物的无序分解等潜在工程地质灾害、温室效应等也已引起世界各国的高度重视,因此,天然气水合物资源安全高效开发和环境风险并重,成为当前世界科技创新的前沿。本文回顾了国内外天然气水合物资源勘探和试采技术研究进展,在此基础上,针对我国海域潜在目标区以及我国已经获取的天然气水合物样品的相关特性,提出了我国天然气水合物资源勘探开发技术方向。

关键词: 天然气水合物;勘探与试采;储量巨大;研究现状;发展战略    

标题 作者 时间 类型 操作

Research progress on hydrate plugging in multiphase mixed rich-liquid transportation pipelines

Shuyu SONG, Zhiming LIU, Li ZHOU, Liyan SHANG, Yaxin WANG

期刊论文

Fundamental characteristics of gas hydrate-bearing sediments in the Shenhu area, South China Sea

Xin LYU, Qingping LI, Yang GE, Junlong ZHU, Shouwei ZHOU, Qiang FU

期刊论文

Progress in use of surfactant in nearly static conditions in natural gas hydrate formation

Zhen PAN, Yi WU, Liyan SHANG, Li ZHOU, Zhien ZHANG

期刊论文

Impacts of CO2 and H2S on the risk of hydrate formation during pipeline transport of natural gas

Solomon A. Aromada, Bjørn Kvamme

期刊论文

in numerical simulations on multiphase flow and thermodynamics in production of natural gas from gas hydrate

Lin ZUO, Lixia SUN, Changfu YOU

期刊论文

Efficient promotion of methane hydrate formation and elimination of foam generation using fluorinated

Quan CAO, Dongyan XU, Huanfei XU, Shengjun LUO, Rongbo GUO

期刊论文

Progress and prospect of hydrate-based desalination technology

Jibao ZHANG, Shujun CHEN, Ning MAO, Tianbiao HE

期刊论文

Analysis of physical properties of gas hydrate-bearing unconsolidated sediment samples from the ultra-deepwater

期刊论文

Key issues in development of offshore natural gas hydrate

Shouwei ZHOU, Qingping LI, Xin LV, Qiang FU, Junlong ZHU

期刊论文

Mechanism and control factors of hydrate plugging in multiphase liquid-rich pipeline flow systems: a

Shuwei ZHANG, Liyan SHANG, Zhen PAN, Li ZHOU, You GUO

期刊论文

天然气水合物——未来的新能源

金庆焕

期刊论文

Dual-functional sites for synergistic adsorption of Cr(VI) and Sb(V) by polyaniline-TiO hydrate: Adsorption

期刊论文

海洋天然气水合物藏开采若干问题研究

白玉湖,李清平

期刊论文

海洋天然气水合物开采技术与装备发展研究

付强,王国荣,周守为,钟林,王雷振

期刊论文

天然气水合物资源勘探与试采技术研究现状与发展战略

付强,周守为,李清平

期刊论文