资源类型

期刊论文 122

会议视频 16

年份

2024 7

2023 15

2022 28

2021 9

2020 12

2019 12

2018 7

2017 4

2016 4

2015 9

2014 2

2013 5

2012 3

2011 3

2010 1

2009 2

2008 4

2007 3

2006 5

2005 1

展开 ︾

关键词

智能制造 7

农业科学 6

智能机器人 3

人工智能 2

人机协作 2

仿生机器人 2

信息技术 2

机器人 2

移动机器人 2

BP算法 1

HIFU 1

Hilare 机器人 1

下肢外骨骼机器人;人机交互;运动学习;轨迹生成;运动基元;黑盒优化 1

下肢;外骨骼;自平衡;双足行走;模块化设计 1

专利分析 1

个性化机器人 1

习惯学习 1

乳腺癌 1

产业链 1

展开 ︾

检索范围:

排序: 展示方式:

Footholds optimization for legged robots walking on complex terrain

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0742-y

摘要: This paper proposes a novel continuous footholds optimization method for legged robots to expand their walking ability on complex terrains. The algorithm can efficiently run onboard and online by using terrain perception information to protect the robot against slipping or tripping on the edge of obstacles, and to improve its stability and safety when walking on complex terrain. By relying on the depth camera installed on the robot and obtaining the terrain heightmap, the algorithm converts the discrete grid heightmap into a continuous costmap. Then, it constructs an optimization function combined with the robot’s state information to select the next footholds and generate the motion trajectory to control the robot’s locomotion. Compared with most existing footholds selection algorithms that rely on discrete enumeration search, as far as we know, the proposed algorithm is the first to use a continuous optimization method. We successfully implemented the algorithm on a hexapod robot, and verified its feasibility in a walking experiment on a complex terrain.

关键词: footholds optimization     legged robot     complex terrain adapting     hexapod robot     locomotion control    

Landing control method of a lightweight four-legged landing and walking robot

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0707-1

摘要: The prober with an immovable lander and a movable rover is commonly used to explore the Moon’s surface. The rover can complete the detection on relatively flat terrain of the lunar surface well, but its detection efficiency on deep craters and mountains is relatively low due to the difficulties of reaching such places. A lightweight four-legged landing and walking robot called “FLLWR” is designed in this study. It can take off and land repeatedly between any two sites wherever on deep craters, mountains or other challenging landforms that are difficult to reach by direct ground movement. The robot integrates the functions of a lander and a rover, including folding, deploying, repetitive landing, and walking. A landing control method via compliance control is proposed to solve the critical problem of impact energy dissipation to realize buffer landing. Repetitive landing experiments on a five-degree-of-freedom lunar gravity testing platform are performed. Under the landing conditions with a vertical velocity of 2.1 m/s and a loading weight of 140 kg, the torque safety margin is 10.3% and 16.7%, and the height safety margin is 36.4% and 50.1% for the cases with or without an additional horizontal disturbance velocity of 0.4 m/s, respectively. The study provides a novel insight into the next-generation lunar exploration equipment.

关键词: landing and walking robot     lunar exploration     buffer landing     compliance control    

Dynamic compliance of energy-saving legged elastic parallel joints for quadruped robots: design and realization

《机械工程前沿(英文)》 2024年 第19卷 第2期 doi: 10.1007/s11465-024-0784-4

摘要: Achieving dynamic compliance for energy-efficient legged robot motion is a longstanding challenge. Although recent predictive control methods based on single-rigid-body models can generate dynamic motion, they all assume infinite energy, making them unsuitable for prolonged robot operation. Addressing this issue necessitates a mechanical structure with energy storage and a dynamic control strategy that incorporates feedback to ensure stability. This work draws inspiration from the efficiency of bio-inspired muscle–tendon networks and proposes a controllable torsion spring leg structure. The design integrates a spring-loaded inverted pendulum model and adopts feedback delays and yield springs to enhance the delay effects. A leg control model that incorporates motor loads is developed to validate the response and dynamic performance of a leg with elastic joints. This model provides torque to the knee joint, effectively reducing the robot’s energy consumption through active or passive control strategies. The benefits of the proposed approach in agile maneuvering of quadruped robot legs in a realistic scenario are demonstrated to validate the dynamic motion performance of the leg with elastic joints with the advantage of energy-efficient legs.

关键词: dynamic responsiveness     energy dissipation     legged locomotion     parallel joints     quadruped robot    

A novel six-legged walking machine tool for

Jimu LIU, Yuan TIAN, Feng GAO

《机械工程前沿(英文)》 2020年 第15卷 第3期   页码 351-364 doi: 10.1007/s11465-020-0594-2

摘要: The manufacture and maintenance of large parts in ships, trains, aircrafts, and so on create an increasing demand for mobile machine tools to perform operations. However, few mobile robots can accommodate the complex environment of industrial plants while performing machining tasks. This study proposes a novel six-legged walking machine tool consisting of a legged mobile robot and a portable parallel kinematic machine tool. The kinematic model of the entire system is presented, and the workspace of different components, including a leg, the body, and the head, is analyzed. A hierarchical motion planning scheme is proposed to take advantage of the large workspace of the legged mobile platform and the high precision of the parallel machine tool. The repeatability of the head motion, body motion, and walking distance is evaluated through experiments, which is 0.11, 1.0, and 3.4 mm, respectively. Finally, an application scenario is shown in which the walking machine tool steps successfully over a 250 mm-high obstacle and drills a hole in an aluminum plate. The experiments prove the rationality of the hierarchical motion planning scheme and demonstrate the extensive potential of the walking machine tool for operations on large parts.

关键词: legged robot     parallel mechanism     mobile machine tool     in-situ machining    

Terrain classification and adaptive locomotion for a hexapod robot Qingzhui

Yue ZHAO, Feng GAO, Qiao SUN, Yunpeng YIN

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 271-284 doi: 10.1007/s11465-020-0623-1

摘要: Legged robots have potential advantages in mobility compared with wheeled robots in outdoor environments. The knowledge of various ground properties and adaptive locomotion based on different surface materials plays an important role in improving the stability of legged robots. A terrain classification and adaptive locomotion method for a hexapod robot named Qingzhui is proposed in this paper. First, a force-based terrain classification method is suggested. Ground contact force is calculated by collecting joint torques and inertial measurement unit information. Ground substrates are classified with the feature vector extracted from the collected data using the support vector machine algorithm. Then, an adaptive locomotion on different ground properties is proposed. The dynamic alternating tripod trotting gait is developed to control the robot, and the parameters of active compliance control change with the terrain. Finally, the method is integrated on a hexapod robot and tested by real experiments. Our method is shown effective for the hexapod robot to walk on concrete, wood, grass, and foam. The strategies and experimental results can be a valuable reference for other legged robots applied in outdoor environments.

关键词: terrain classification     hexapod robot     legged robot     adaptive locomotion     gait control    

Sagittal SLIP-anchored task space control for a monopode robot traversing irregular terrain

Haitao YU, Haibo GAO, Liang DING, Zongquan DENG

《机械工程前沿(英文)》 2020年 第15卷 第2期   页码 193-208 doi: 10.1007/s11465-019-0569-3

摘要: As a well-explored template that captures the essential dynamical behaviors of legged locomotion on sagittal plane, the spring-loaded inverted pendulum (SLIP) model has been extensively employed in both biomechanical study and robotics research. Aiming at fully leveraging the merits of the SLIP model to generate the adaptive trajectories of the center of mass (CoM) with maneuverability, this study presents a novel two-layered sagittal SLIP-anchored (SSA) task space control for a monopode robot to deal with terrain irregularity. This work begins with an analytical investigation of sagittal SLIP dynamics by deriving an approximate solution with satisfactory apex prediction accuracy, and a two-layered SSA task space controller is subsequently developed for the monopode robot. The higher layer employs an analytical approximate representation of the sagittal SLIP model to form a deadbeat controller, which generates an adaptive reference trajectory for the CoM. The lower layer enforces the monopode robot to reproduce a generated CoM movement by using a task space controller to transfer the reference CoM commands into joint torques of the multi-degree of freedom monopode robot. Consequently, an adaptive hopping behavior is exhibited by the robot when traversing irregular terrain. Simulation results have demonstrated the effectiveness of the proposed method.

关键词: legged robots     spring-loaded inverted pendulum     task space control     apex return map     deadbeat control     irregular terrain negotiation    

北京2022年冬奥会六足冰壶机器人机构设计与运动规划 Article

尹科, 高岳, 高峰, 陈先宝, 赵越, 肖宇光, 孙乔, 孙竞

《工程(英文)》 2024年 第35卷 第4期   页码 15-31 doi: 10.1016/j.eng.2023.10.018

摘要:

When a curling rock slides on an ice sheet with an initial rotation, a lateral movement occurs, which is known as the curling phenomenon. The force of friction between the curling rock and the ice sheet changes continually with changes in the environment; thus, the sport of curling requires great skill and experience. The throwing of the curling rock is a great challenge in robot design and control, and existing curling robots usually adopt a combination scheme of a wheel chassis and gripper that differs significantly from human throwing movements. A hexapod curling robot that imitates human kicking, sliding, pushing, and curling rock rotating was designed and manufactured by our group, and completed a perfect show during the Beijing 2022 Winter Olympics. Smooth switching between the walking and throwing tasks is realized by the robot's morphology transformation based on leg configuration switching. The robot's controlling parameters, which include the kicking velocity vk , pushing velocity vp , orientation angle θc , and rotation velocity ω , are determined by aiming and sliding models according to the estimated equivalent friction coefficient μequ and ratio e  of the front and back frictions. The stable errors between the target and actual stopping points converge to 0.2 and 1.105 m in the simulations and experiments, respectively, and the error shown in the experiments is close to that of a well-trained wheelchair curling athlete. This robot holds promise for helping ice-makers rectify ice sheet friction or assisting in athlete training.

关键词: Legged robot     Curling robot     Winter Olympics     Mechanism design     Motion planning    

腿足机器人高爆发电机驱动关节与控制

孟非, 黄强, 余张国, 陈学超, 范徐笑, 张武, 明爱国

《工程(英文)》 2022年 第12卷 第5期   页码 39-47 doi: 10.1016/j.eng.2021.10.016

摘要:

腿足机器人等无人系统需要具备快速的运动响应能力从而适应复杂环境。因此这些系统需要关节在动态运动的不同时刻提供峰值速度或者峰值力矩的爆发输出。尽管液压驱动能够提供很大的输出力,但是其效率较低,并且体积和重量都较大。工业系统所用的电机驱动关节也难以提供瞬时的爆发输出。固定速比的减速器难以兼顾高转速和大力矩输出的矛盾。本文提出了一种适用于腿足机器人的高爆发电机驱动关节和其对应的控制方法。首先,设计了一种高功率密度可变速比减速器来动态调整速度和力矩输出。关节同时采用了一种基于复合相变材料的散热结构。其次,采用了力矩积分控制方法来实现关节周期性的爆发输出。本文采用了多种腿足机器人的跳跃运动来验证所提出的爆发关节和控制方法的有效性。单腿机器人、四足机器人和仿人机器人的跳跃高度分别达到1.5 m、0.8 m和0.5 m。这也是目前公开报道的电机驱动腿足机器人跳跃能力的领先水平。

关键词: 电机驱动关节     变速比传动     力矩控制     腿足机器人    

Integrated design of legged mechatronic system

Chin-Yin CHEN, I-Ming CHEN, Chi-Cheng CHENG

《机械工程前沿(英文)》 2009年 第4卷 第3期   页码 264-275 doi: 10.1007/s11465-009-0060-7

摘要: This paper presents a system based on the integrated design and experiment for a one degree-of-freedom (DOF) legged mechatronic system (LMTS). A six-bar linkage mechanism, which is derived from a four-bar linkage with a symmetrical coupler point and pantograph into one, is designed, and common controllers are used to control the velocity and position loops. For system-based dynamic optimization, the design for control (DFC) approach is used to integrate the structure and control for improving dynamic performance with reduced control torque. Finally, for a rapid 3D graphical based implementation of the system, high-level computer-aided rapid system integration (CARSI) technology is used to integrate the structure design, controller design, and system implementation into the design and analytical software environment based on Pro/engineer, XML syntax, Simmechanics, and Simulink. Thus, the development time for the LMTS is reduced.

关键词: integrated design     design for control     legged mechatronic system     computer aided rapid system integration    

Untethered quadrupedal hopping and bounding on a trampoline

Boxing WANG, Chunlin ZHOU, Ziheng DUAN, Qichao ZHU, Jun WU, Rong XIONG

《机械工程前沿(英文)》 2020年 第15卷 第2期   页码 181-192 doi: 10.1007/s11465-019-0559-5

摘要: For quadruped robots with springy legs, a successful jump usually requires both suitable elastic parts and well-designed control algorithms. However, these two problems are mutually restricted and hard to solve at the same time. In this study, we attempt to solve the problem of controller design with the help of a robot without any elastic mounted parts, in which the untethered robot is made to jump on a trampoline. The differences between jumping on hard surfaces with springy legs and jumping on springy surfaces with rigid legs are briefly discussed. An intuitive control law is proposed to balance foot contact forces; in this manner, excessive pitch oscillation during hopping or bounding can be avoided. Hopping height is controlled by tuning the time delay of the leg stretch. Together with other motion generators based on kinematic law, the robot can perform translational and rotational movements while hopping or bounding on the trampoline. Experiments are conducted to validate the effectiveness of the proposed control framework.

关键词: hopping and bounding gait     compliant mechanism     compliant contact     balance control strategy     legged locomotion control     quadruped robot    

A total torque index for dynamic performance evaluation of a radial symmetric six-legged robot

Kejia LI, Xilun DING, Marco CECCARELL

《机械工程前沿(英文)》 2012年 第7卷 第2期   页码 219-230 doi: 10.1007/s11465-012-0320-9

摘要:

This article focuses on the dynamic index and performance of a radial symmetric six-legged robot. At first the structure of the robot is described in brief and its inverse kinematics is presented. Then the dynamic model is formulated as based on the Lagrange equations. A novel index of total torque is proposed by considering the posture of the supporting legs. The new index can be used to optimize the leg’s structure and operation for consuming minimum power and avoiding unstable postures of the robot. A characterization of the proposed six-legged robot is obtained by a parametric analysis of robot performance through simulation using the presented dynamic model. Main influences are outlined as well as the usefulness of the proposed performance index.

关键词: six-legged robots     dynamic modeling     performance index    

Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0687-1

摘要: Masticatory robots are an effective in vitro performance testing device for dental material and mandibular prostheses. A cable-driven linear actuator (CDLA) capable of bidirectional motion is proposed in this study to design a masticatory robot that can achieve increasingly human-like chewing motion. The CDLA presents remarkable advantages, such as lightweight and high stiffness structure, in using cable amplification and pulley systems. This work also exploits the proposed CDLA and designs a masticatory robot called Southeast University masticatory robot (SMAR) to solve existing problems, such as bulky driving linkage and position change of the muscle’s origin. Stiffness analysis and performance experiment validate the CDLA’s efficiency, with its stiffness reaching 1379.6 N/mm (number of cable parts n = 4), which is 21.4 times the input wire stiffness. Accordingly, the CDLA’s force transmission efficiencies in two directions are 84.5% and 85.9%. Chewing experiments are carried out on the developed masticatory robot to verify whether the CDLA can help SMAR achieve a natural human-like chewing motion and sufficient chewing forces for potential applications in performance tests of dental materials or prostheses.

关键词: masticatory robot     cable-driven     linear actuator     parallel robot     stiffness analysis    

Review of human–robot coordination control for rehabilitation based on motor function evaluation

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0684-4

摘要: As a wearable and intelligent system, a lower limb exoskeleton rehabilitation robot can provide auxiliary rehabilitation training for patients with lower limb walking impairment/loss and address the existing problem of insufficient medical resources. One of the main elements of such a human–robot coupling system is a control system to ensure human–robot coordination. This review aims to summarise the development of human–robot coordination control and the associated research achievements and provide insight into the research challenges in promoting innovative design in such control systems. The patients’ functional disorders and clinical rehabilitation needs regarding lower limbs are analysed in detail, forming the basis for the human–robot coordination of lower limb rehabilitation robots. Then, human–robot coordination is discussed in terms of three aspects: modelling, perception and control. Based on the reviewed research, the demand for robotic rehabilitation, modelling for human–robot coupling systems with new structures and assessment methods with different etiologies based on multi-mode sensors are discussed in detail, suggesting development directions of human–robot coordination and providing a reference for relevant research.

关键词: human–robot coupling     lower limb rehabilitation     exoskeleton robot     motor assessment     dynamical model     perception    

Strategy for robot motion and path planning in robot taping

Qilong YUAN,I-Ming CHEN,Teguh Santoso LEMBONO,Simon Nelson LANDÉN,Victor MALMGREN

《机械工程前沿(英文)》 2016年 第11卷 第2期   页码 195-203 doi: 10.1007/s11465-016-0390-1

摘要:

Covering objects with masking tapes is a common process for surface protection in processes like spray painting, plasma spraying, shot peening, etc. Manual taping is tedious and takes a lot of effort of the workers. The taping process is a special process which requires correct surface covering strategy and proper attachment of the masking tape for an efficient surface protection. We have introduced an automatic robot taping system consisting of a robot manipulator, a rotating platform, a 3D scanner and specially designed taping end-effectors. This paper mainly talks about the surface covering strategies for different classes of geometries. The methods and corresponding taping tools are introduced for taping of following classes of surfaces: Cylindrical/extended surfaces, freeform surfaces with no grooves, surfaces with grooves, and rotational symmetrical surfaces. A collision avoidance algorithm is introduced for the robot taping manipulation. With further improvements on segmenting surfaces of taping parts and tape cutting mechanisms, such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to assist humans in this tedious and time costly work.

关键词: robot taping     path planning     robot manipulation     3D scanning    

Tracked robot with underactuated tension-driven RRP transformable mechanism: ideas and design

《机械工程前沿(英文)》 2024年 第19卷 第1期 doi: 10.1007/s11465-023-0777-8

摘要: Robots with transformable tracked mechanisms are widely used in complex terrains because of their high adaptability, and many studies on novel locomotion mechanisms have been conducted to make them able to climb higher obstacles. Developing underactuated transformable mechanisms for tracked robots could decrease the number of actuators used while maintaining the flexibility and obstacle-crossing capability of these robots, and increasing their cost performance. Therefore, the underactuated tracked robots have appreciable research potential. In this paper, a novel tracked robot with a newly proposed underactuated revolute‒revolute‒prismatic (RRP) transformable mechanism, which is inspired by the sit-up actions of humans, was developed. The newly proposed tracked robot has only two actuators installed on the track pulleys for moving and does not need extra actuators for transformations. Instead, it could concentrate the track belt’s tension toward one side, and the unbalanced tension would drive the linkage mechanisms to change its configuration. Through this method, the proposed underactuated design could change its external shape to create support points with the terrain and move its center of mass actively at the same time while climbing obstacles or crossing other kinds of terrains, thus greatly improving the climbing capability of the robot. The geometry and kinematic relationships of the robot and the crossing strategies for three kinds of typical obstacles are discussed. On the basis of such crossing motions, the parameters of links in the robot are designed to make sure the robot has sufficient stability while climbing obstacles. Terrain-crossing dynamic simulations were run and analyzed to prove the feasibility of the robot. A prototype was built and tested. Experiments show that the proposed robot could climb platforms with heights up to 33.3% of the robot’s length or cross gaps with widths up to 43.5% of the robot’s length.

关键词: mechanical design     tracked robot     underactuated mechanisms     RRP mechanism     obstacle crossing strategy    

标题 作者 时间 类型 操作

Footholds optimization for legged robots walking on complex terrain

期刊论文

Landing control method of a lightweight four-legged landing and walking robot

期刊论文

Dynamic compliance of energy-saving legged elastic parallel joints for quadruped robots: design and realization

期刊论文

A novel six-legged walking machine tool for

Jimu LIU, Yuan TIAN, Feng GAO

期刊论文

Terrain classification and adaptive locomotion for a hexapod robot Qingzhui

Yue ZHAO, Feng GAO, Qiao SUN, Yunpeng YIN

期刊论文

Sagittal SLIP-anchored task space control for a monopode robot traversing irregular terrain

Haitao YU, Haibo GAO, Liang DING, Zongquan DENG

期刊论文

北京2022年冬奥会六足冰壶机器人机构设计与运动规划

尹科, 高岳, 高峰, 陈先宝, 赵越, 肖宇光, 孙乔, 孙竞

期刊论文

腿足机器人高爆发电机驱动关节与控制

孟非, 黄强, 余张国, 陈学超, 范徐笑, 张武, 明爱国

期刊论文

Integrated design of legged mechatronic system

Chin-Yin CHEN, I-Ming CHEN, Chi-Cheng CHENG

期刊论文

Untethered quadrupedal hopping and bounding on a trampoline

Boxing WANG, Chunlin ZHOU, Ziheng DUAN, Qichao ZHU, Jun WU, Rong XIONG

期刊论文

A total torque index for dynamic performance evaluation of a radial symmetric six-legged robot

Kejia LI, Xilun DING, Marco CECCARELL

期刊论文

Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion

期刊论文

Review of human–robot coordination control for rehabilitation based on motor function evaluation

期刊论文

Strategy for robot motion and path planning in robot taping

Qilong YUAN,I-Ming CHEN,Teguh Santoso LEMBONO,Simon Nelson LANDÉN,Victor MALMGREN

期刊论文

Tracked robot with underactuated tension-driven RRP transformable mechanism: ideas and design

期刊论文