检索范围:
排序: 展示方式:
Machine learning modeling identifies hypertrophic cardiomyopathy subtypes with genetic signature
《医学前沿(英文)》 页码 768-780 doi: 10.1007/s11684-023-0982-1
关键词: machine learning methods hypertrophic cardiomyopathy genetic risk
Soheila KOOKALANI; Bin CHENG; Jose Luis Chavez TORRES
《结构与土木工程前沿(英文)》 2022年 第16卷 第10期 页码 1249-1266 doi: 10.1007/s11709-022-0858-5
关键词: machine learning gridshell structure regression sensitivity analysis interpretability methods
Hamid MIRZAHOSSEIN; Milad SASHURPOUR; Seyed Mohsen HOSSEINIAN; Vahid Najafi Moghaddam GILANI
《结构与土木工程前沿(英文)》 2022年 第16卷 第5期 页码 657-666 doi: 10.1007/s11709-022-0827-z
关键词: safety rural accidents multiple logistic regression artificial neural networks
Prediction of hydro-suction dredging depth using data-driven methods
《结构与土木工程前沿(英文)》 2021年 第15卷 第3期 页码 652-664 doi: 10.1007/s11709-021-0719-7
关键词: sedimentation water resources dam engineering machine learning heuristic
Spatial prediction of soil contamination based on machine learning: a review
《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1693-1
● A review of machine learning (ML) for spatial prediction of soil contamination.
关键词: Soil contamination Machine learning Prediction Spatial distribution
《环境科学与工程前沿(英文)》 2022年 第18卷 第3期 doi: 10.1007/s11783-024-1789-2
● The application of ML in groundwater quality assessment and prediction is reviewed.
关键词: Groundwater quality assessment Groundwater quality prediction Machine learning Groundwater modeling
大数据为材料研究创造新机遇——材料设计的机器学习方法与应用综述 Review
周腾, Zhen Song, Kai Sundmacher
《工程(英文)》 2019年 第5卷 第6期 页码 1017-1026 doi: 10.1016/j.eng.2019.02.011
材料的发展在历史上是由人类的需求和欲望所驱动的,且在可预见的将来,这种情况应该会继续下去。到2050年,全球人口预计将达到100亿,人们对清洁高效能源、个性化消费产品、安全食品供应和专业医疗保健等方面的需求也将日益增加。新型功能材料是为目标属性或性能而定制的,这将是应对挑战的关键。从传统上讲,先进的材料都是通过经验或实验验证的方法发现的。因为现代实验和计算技术产生的大数据越来越容易获取,数据驱动或机器学习(ML)方法为发现和合理设计材料打开了新的蓝图。本文简要介绍了各种ML方法和相关的软件或工具。重点介绍了将ML方法应用于材料研究的主要思路和基本步骤。本文还总结了近期ML在多孔聚合材料、催化材料和含能材料的大规模筛选和优化设计中的重要应用。最后给出了结束语和展望。
State-of-the-art applications of machine learning in the life cycle of solid waste management
《环境科学与工程前沿(英文)》 2023年 第17卷 第4期 doi: 10.1007/s11783-023-1644-x
● State-of-the-art applications of machine learning (ML) in solid waste (SW) is presented.
关键词: Machine learning (ML) Solid waste (SW) Bibliometrics SW management Energy utilization Life cycle
《化学科学与工程前沿(英文)》 2022年 第16卷 第2期 页码 183-197 doi: 10.1007/s11705-021-2073-7
关键词: machine learning flowsheet simulations constraints exploration
Evaluation and prediction of slope stability using machine learning approaches
《结构与土木工程前沿(英文)》 2021年 第15卷 第4期 页码 821-833 doi: 10.1007/s11709-021-0742-8
关键词: slope stability factor of safety regression machine learning repeated cross-validation
Big data and machine learning: A roadmap towards smart plants
《工程管理前沿(英文)》 页码 623-639 doi: 10.1007/s42524-022-0218-0
关键词: big data machine learning artificial intelligence smart sensor cyber–physical system Industry 4.0 intelligent system digitalization
Machine learning in building energy management: A critical review and future directions
《工程管理前沿(英文)》 2022年 第9卷 第2期 页码 239-256 doi: 10.1007/s42524-021-0181-1
关键词: building energy management machine learning integrated framework knowledge evolution
《环境科学与工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11783-024-1777-6
● A machine learning approach was applied to predict free chlorine residuals.
关键词: Machine learning Data-driven modeling Drinking water treatment Disinfection Chlorination
《环境科学与工程前沿(英文)》 2023年 第17卷 第6期 doi: 10.1007/s11783-023-1677-1
● MSWNet was proposed to classify municipal solid waste.
关键词: Municipal solid waste sorting Deep residual network Transfer learning Cyclic learning rate Visualization
Recent development on statistical methods for personalized medicine discovery
null
《医学前沿(英文)》 2013年 第7卷 第1期 页码 102-110 doi: 10.1007/s11684-013-0245-7
It is well documented that patients can show significant heterogeneous responses to treatments so the best treatment strategies may require adaptation over individuals and time. Recently, a number of new statistical methods have been developed to tackle the important problem of estimating personalized treatment rules using single-stage or multiple-stage clinical data. In this paper, we provide an overview of these methods and list a number of challenges.
关键词: dynamic treatment regimes personalized medicine reinforcement learning Q-learning
标题 作者 时间 类型 操作
Machine learning modeling identifies hypertrophic cardiomyopathy subtypes with genetic signature
期刊论文
Structural performance assessment of GFRP elastic gridshells by machine learning interpretability methods
Soheila KOOKALANI; Bin CHENG; Jose Luis Chavez TORRES
期刊论文
Presentation of machine learning methods to determine the most important factors affecting road traffic
Hamid MIRZAHOSSEIN; Milad SASHURPOUR; Seyed Mohsen HOSSEINIAN; Vahid Najafi Moghaddam GILANI
期刊论文
Application of machine learning models in groundwater quality assessment and prediction: progress and
期刊论文
Using machine learning models to explore the solution space of large nonlinear systems underlying flowsheet
期刊论文
Development of gradient boosting-assisted machine learning data-driven model for free chlorine residual
期刊论文
MSWNet: A visual deep machine learning method adopting transfer learning based upon ResNet 50 for municipal
期刊论文