资源类型

期刊论文 402

会议视频 3

年份

2023 43

2022 43

2021 37

2020 36

2019 25

2018 29

2017 23

2016 16

2015 23

2014 15

2013 15

2012 15

2011 9

2010 11

2009 14

2008 9

2007 13

2006 2

2005 3

2004 2

展开 ︾

关键词

二氧化碳 2

吸附 2

固体氧化物燃料电池 2

带传动 2

无氢渗碳 2

显微硬度 2

有色金属工业 2

甲烷 2

重金属 2

重金属废水 2

2035 1

Deep metal mining 1

EDI 1

MOF基催化剂 1

Mitigation 1

Monitoring 1

PEDOT:PSS 1

PET酶 1

PET降解 1

展开 ︾

检索范围:

排序: 展示方式:

Hollow carbon spheres and their noble metal-free hybrids in catalysis

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1380-1407 doi: 10.1007/s11705-021-2097-z

摘要: Hollow carbon spheres have garnered great interest owing to their high surface area, large surface-to-volume ratio and reduced transmission lengths. Herein, we overview hollow carbon sphere-based materials and their noble metal-free hybrids in catalysis. Firstly, we summarize the key fabrication techniques for various kinds of hollow carbon spheres, with a particular emphasis on controlling pore structure and surface morphology, and then heterogeneous doping as well as their metal-free/containing hybrids are presented; next, possible applications for non-noble metal/hollow carbon sphere hybrids in the area of energy-related catalysis, including oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, water splitting, rechargeable Zn-air batteries and pollutant degradation are discussed; finally, we introduce the various challenges and opportunities offered by hollow carbon spheres from the perspective of synthesis and catalysis.

关键词: hollow carbon spheres     functionalization     noble metal-free     catalysis    

Recent advances on metal-free graphene-based catalysts for the production of industrial chemicals

Zhiyong Wang, Yuan Pu, Dan Wang, Jie-Xin Wang, Jian-Feng Chen

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 855-866 doi: 10.1007/s11705-018-1722-y

摘要: With the development of carbon catalysts, graphene-based metal-free catalysts have drawn increasing attention in both scientific research and in industrial chemical production processes. In recent years, the catalytic activities of metal-free catalysts have significantly improved and they have become promising alternatives to traditional metal-based catalysts. The use of metal-free catalysts greatly improves the sustainability of chemical processes. In view of this, the recent progress in the preparation of graphene-based metal-free catalysts along with their applications in catalytic oxidation, reduction and coupling reactions are summarized in this review. The future trends and challenges for the design of graphene-based materials for industrial organic catalytic reactions with good stabilities and high catalytic performance are also discussed.

关键词: graphene-based materials     metal-free catalyst     industrial chemical productions     catalytic reaction    

Metal-free, carbon-based catalysts for oxygen reduction reactions

Zhiyi Wu,Zafar Iqbal,Xianqin Wang

《化学科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 280-294 doi: 10.1007/s11705-015-1524-4

摘要: Developing metal-free, carbon-based catalysts to replace platinum-based catalysts for oxygen reduction reactions (ORRs) is an emerging area of research. In recent years, different carbon structures including carbon doped with IIIA-VIIA heteroatoms (C−M site-based, where M represents the doped heteroatom) and polynitrogen (PN) compounds encapsulated in carbon nanotubes (CNTs) (N−N site-based) have been synthesized. Compared to metallic catalysts, these materials are highly active, stable, inexpensive, and environmentally friendly. This review discusses the development of these materials, their ORR performances and the mechanisms for how the incorporation of heteroatoms enhances the ORR activity. Strategies for tailoring the structures of the carbon substrates to improve ORR performance are also discussed. Future studies in this area will need to include optimizing synthetic strategies to control the type, amount and distribution of the incorporated heteroatoms, as well as better understanding the ORR mechanisms in these catalysts.

关键词: oxygen reduction reaction     electrocatalysis     metal-free     carbon-based     polynitrogen    

超重力环境下非金属氮掺杂石墨烯泡沫催化还原反应性能研究 Article

王志勇, 赵志建, Jesse Baucom, 王丹, Liming Dai, 陈建峰

《工程(英文)》 2020年 第6卷 第6期   页码 680-687 doi: 10.1016/j.eng.2019.12.018

摘要:

本文以硝基苯还原和亚甲基蓝降解为模型反应体系,以非金属氮掺杂石墨烯泡沫(NGF)作为三维结构式催化材料,研究了超重力环境对催化反应性能的影响。在超重力旋转圆管反应器内6484 g (g = 9.81 m·s–2)的超重力环境下,非金属催化硝基苯还原的表观速率常数是传统搅拌反应器内的6 倍。通过计算流体力学理论模拟,揭示了超重力旋转管式反应器内超重力水平较高,湍流动能比传统反应器内有显著提高,液固相表面更新速度快,提高了催化反应效率。X射线光电子能谱和拉曼光谱测试表明该催化材料组成和结构在超重力环境下的反应过程中保持稳定。在另一个模型反应体系中,非金属氮掺杂石墨烯泡沫催化亚甲基蓝降解的速率也随着超重力水平的增加而增大。这些结果表明了超重力强化非金属碳基催化材料催化还原反应的潜力。

关键词: 超重力技术     过程强化     非金属催化     碳基纳米材料     催化还原    

Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation

Tao Zhang, Tewodros Asefa

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 329-338 doi: 10.1007/s11705-018-1741-8

摘要:

Copper nanoparticles-decorated polyaniline-derived mesoporous carbon that can serve as noble metal-free electrocatalyst for the hydrazine oxidation reaction (HzOR) is synthesized via a facile synthetic route. The material exhibits excellent electrocatalytic activity toward HzOR with low overpotential and high current density. The material also remains stable during the electrocatalytic reaction for long time. Its good electrocatalytic performance makes this material a promising alternative to conventional noble metal-based catalysts (e.g., Pt) that are commonly used in HzOR-based fuel cells.

关键词: copper nanoparticles     mesoporous carbon     noble metal-free electrocatalyst     hydrazine oxidation reaction     polyaniline    

以NH3OH+/NH2NH3+作为B位阳离子的无金属六方钙钛矿含能材料 Article

尚宇, 余志鸿, 黄瑞康, 陈劭力, 刘德轩, 陈晓娴, 张伟雄, 陈小明

《工程(英文)》 2020年 第6卷 第9期   页码 1013-1018 doi: 10.1016/j.eng.2020.05.018

摘要:

寻找可经由简单路线合成的高性能含能材料是发展先进实用含能材料的重要问题。文中通过合理地选择分子组分,经由易于规模放大的简单合成路线,以NH3OH+和NH2NH3+分别作为B位点阳离子构筑了两例无金属六方钙钛矿含能材料(H2dabco)B(ClO4)3(分别命名为DAP-6和DAP-7,其中H2dabco2+是1,4-二氮杂双环[2.2.2]辛烷-1,4-二鎓离子)。与基于NH4+阳离子构筑的立方钙钛矿类似物(H2dabco)(NH4)(ClO4)3相比,DAP-6和DAP-7有较高的晶体堆积密度和生成焓,从而具有更高的爆轰性能。特别地,DAP-7具有超高热稳定性(起始分解温度Td = 375.3 °C)、高爆速(D = 8.883 km·s‒1)和高爆压(P = 35.8 GPa),因此具有作为耐热炸药的应用潜力。计算表明,DAP-6不仅具有较高的热稳定性(Td = 245.9 °C)以及优异的爆轰性能(D = 9.123 km·s‒1P = 38.1 GPa),而且其爆热值(Q = 6.35 kJ·g‒1)和理论比冲值(Isp = 265.3 s)均稍优于六硝基六氮杂异伍兹烷(CL-20:Q = 6.23 kJ·g‒1Isp = 264.8 s),在炸药和推进剂领域中具有很好的应用前景。

关键词: 含能材料     单质炸药     固体推进剂     无金属六方钙钛矿    

Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

Gang WU

《能源前沿(英文)》 2017年 第11卷 第3期   页码 286-298 doi: 10.1007/s11708-017-0477-3

摘要: To significantly reduce the cost of proton exchange membrane fuel cells, platinum-group metal (PGM)-free cathode catalysts are highly desirable. Current M-N-C (M: Fe, Co or Mn) catalysts are considered the most promising due to their encouraging performance. The challenge thus has been their stability under acidic conditions, which has hindered their use for any practical applications. In this review, based on the author’s research experience in the field for more than 10 years, current challenges and possible solutions to overcome these problems were discussed. The current Edisonian approach (i.e., trial and error) to developing PGM-free catalysts has been ineffective in achieving revolutionary breakthroughs. Novel synthesis techniques based on a more methodological approach will enable atomic control and allow us to achieve optimal electronic and geometric structures for active sites uniformly dispersed within the 3D architectures. Structural and chemical controlled precursors such as metal-organic frameworks are highly desirable for making catalysts with an increased density of active sites and strengthening local bonding structures among N, C and metals. Advanced electrochemical and physical characterization, such as electron microscopy and X-ray absorption spectroscopy should be combined with first principle density functional theory (DFT) calculations to fully elucidate the active site structures.

关键词: oxygen reduction     fuel cells     cathode     nonprecious metal catalysts     carbon nanocomposites    

Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation

Jie Lan, Daizong Qi, Jie Song, Peng Liu, Yi Liu, Yun-Xiang Pan

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 948-955 doi: 10.1007/s11705-020-1920-2

摘要: Cobalt hydroxide has been emerging as a promising catalyst for the electrocatalytic oxidation reactions, including the oxygen evolution reaction (OER) and glucose oxidation reaction (GOR). Herein, we prepared cobalt hydroxide nanoparticles (CoHP) and cobalt hydroxide nanosheets (CoHS) on nickel foam. In the electrocatalytic OER, CoHS shows an overpotential of 306 mV at a current density of 10 mA·cm . This is enhanced as compared with that of CoHP (367 mV at 10 mA·cm ). In addition, CoHS also exhibits an improved performance in the electrocatalytic GOR. The improved electrocatalytic performance of CoHS could be due to the higher ability of the two-dimensional nanosheets on CoHS in electron transfer. These results are useful for fabricating efficient catalysts for electrocatalytic oxidation reactions.

关键词: electrocatalytic oxidation     cobalt hydroxide     nanosheet     water     glucose    

Effects of ancillary ligands in acceptorless benzyl alcohol dehydrogenation mediated by phosphine-free

《化学科学与工程前沿(英文)》 2023年 第17卷 第3期   页码 314-325 doi: 10.1007/s11705-022-2219-2

摘要: Acceptorless alcohol dehydrogenation stands out as one of the most promising strategies in hydrogen storage technologies. Among various catalytic systems for this reaction, cost-effective molecular catalysts using phosphine-free ligands have gained considerable attention. However, the central challenge for using non-precious metals is to overcome the propensity of reacting by one-electron pathway. Herein, we synthesized a phosphine-free η5-C5Me5-Co complex by using the metal–ligand cooperative strategy and compared its activity with analogous catalysts toward acceptorless alcohol dehydrogenation. The catalyst showed excellent performance with a turnover number of 130.4 and a selectivity close to 100%. The improved performance among the class of η5-C5Me5-Co complexes could be attributed to the more accessible Co center and its cooperation with the redox-active ligand. To further study the systematic structure-activity relationship, we investigated the electronic structures of η5-C5Me5-Co complexes by a set of characterizations. The results showed that the redox-active ligand has a significant influence on the η5-C5Me5-Co moiety. In the meantime, the proximal O/OH group is beneficial for shuttling protons. For the catalytic cycle, two dehydrogenation scenarios were interrogated through density functional theory, and the result suggested that the outer-sphere pathway was preferred. The formation of a dihydrogen complex was the rate-determining step with a ΔG value of 16.9 kcal∙mol‒1. The electron population demonstrated that the η5-C5Me5 ligand played a key role in stabilizing transition states during dehydrogenation steps. This work identified the roles of vital ligand components to boost catalytic performance and offered rationales for designing metal–ligand cooperative nonprecious metal complexes.

关键词: acceptorless alcohol dehydrogenation     η5-C5Me5-Co     metal–ligand cooperation     theoretical calculation    

Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or

Xuejiao Wang, Xiang Feng, Jing Shang

《环境科学与工程前沿(英文)》 2018年 第12卷 第6期 doi: 10.1007/s11783-018-1061-8

摘要:

•The efficient PEC degradation of RhB is realized using no photocatalyst.

•The efficient PEC degradation of RhB features the low salinity.

•The PEC degradation of RhB takes place on the anode and cathode simultaneously.

关键词: Energy relay structure     Energy saving     Photocatalyst-free and low-salinity degradation     Photoelectrochemical cell    

Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free

Haiyan LI, Jing LIU

《能源前沿(英文)》 2011年 第5卷 第1期   页码 20-42 doi: 10.1007/s11708-011-0139-9

摘要: Water is perhaps the most widely adopted working fluid in conventional industrial heat transport engineering. However, it may no longer be the best option today due to the increasing scarcity of water resources. Furthermore, the wide variations in water supply throughout the year and across different geographic regions also makes it harder to easily access. To address this issue, finding new alternatives to replace water-based technologies is imperative. In this paper, the concept of a water-free heat exchanger is proposed and comprehensively analyzed for the first time. The liquid metal with a low melting point is identified as an ideal fluid that can flexibly be used within a wide range of working temperatures. Some liquid metals and their alloys, which have previously received little attention in thermal management areas, are evaluated. With superior thermal conductivity, electromagnetic field drivability, and extremely low power consumption, liquid metal coolants promise many opportunities for revolutionizing modern heat transport processes: serving as heat transport fluid in industries, administrating thermal management in power and energy systems, and innovating enhanced cooling in electronic or optical devices. Furthermore, comparative analyses are conducted to understand the technical barriers encountered by advanced water-based heat transfer strategies and clarify this new frontier in heat-transport study. In addition, the unique merits of liquid metals that could lead to innovative heat exchanger technologies are evaluated comprehensively. A few promising industrial situations, such as heat recovery, chip cooling, thermoelectricity generation, and military applications, where liquid metals could play irreplaceable roles, were outlined. The technical challenges and scientific issues thus raised are summarized. With their evident ability to meet various critical requirements in modern advanced energy and power industries, liquid metal-enabled technologies are expected to usher a new and global era of water-free heat exchangers.

关键词: heat exchanger     liquid metal     water resource     heat transport enhancement     coolant     thermal management     process engineering     energy crisis     chip cooling    

Metal-organic framework-based CO

Yujie Ban, Meng Zhao, Weishen Yang

《化学科学与工程前沿(英文)》 2020年 第14卷 第2期   页码 188-215 doi: 10.1007/s11705-019-1872-6

摘要: A low-carbon economy calls for CO capture technologies. Membrane separations represent an energy-efficient and environment-friendly process compared with distillations and solvent absorptions. Metal-organic frameworks (MOFs), as a novel type of porous materials, are being generated at a rapid and growing pace, which provide more opportunities for high-efficiency CO capture. In this review, we illustrate a conceptional framework from material design and membrane separation application for CO capture, and emphasize two importance themes, namely (i) design and modification of CO -philic MOF materials that targets secondary building units, pore structure, topology and hybridization and (ii) construction of crack-free membranes through chemical epitaxy growth of active building blocks, interfacial assembly, ultrathin two-dimensional nanosheet assembly and mixed-matrix integration strategies, which would give rise to the most promising membrane performances for CO capture, and be expected to overcome the bottleneck of permeability-selectivity limitations.

关键词: CO2 capture     CO2-philic MOFs     crack-free membranes    

铋基亲钠框架互穿钠金属负极实现无枝晶/高倍率钠离子电池

赵婉玉, 郭敏, 左志军, 赵晓莉, 窦湟琳, 张宜杰, 李时莹, 吴子辰, 石雅雲, 马紫峰, 杨晓伟

《工程(英文)》 2022年 第11卷 第4期   页码 89-96 doi: 10.1016/j.eng.2021.08.028

摘要:

具有高体积能量密度的钠(Na)金属电池非常需要能够在高倍率下运行的性能。然而在大倍率下,钠离子块体金属负极中不均匀且大量的迁移会导致金属的局部沉积/溶解,带来严重的枝晶生长和松散堆叠的问题。在本工作中,我们设计了具有亲钠性质的铋化钠/钠互穿金属负极(Na/Na3Bi)。与块体钠相比,这种互穿负极提供了强烈的Na+吸附能力和低的离子扩散势垒,确保了Na+的均匀成核和快速迁移,从而实现在高电流密度下的均匀沉积和溶解。此外,亲钠性的铋基材料能够保证金属钠沉积在框架的内部,实现金属的致密沉积,有利于提高体积容量。Na/Na3Bi 金属负极能够同时承受高电流密度(5 mA∙cm−2)和高循环容量(5 mA∙h∙cm−2),并且可以在2 mA∙cm−2的电流密度下长期(长达2800 h)稳定循环。

关键词: 钠金属负极     无枝晶负极     致密电沉积     亲钠性铋基材料     离子传输壁垒    

Cell-free systems in the new age of synthetic biology

Fernando Villarreal,Cheemeng Tan

《化学科学与工程前沿(英文)》 2017年 第11卷 第1期   页码 58-65 doi: 10.1007/s11705-017-1610-x

摘要: The advent of synthetic biology has ushered in new applications of cell-free transcription-translation systems. These cell-free systems are reconstituted using cellular proteins, and are amenable to modular control of their composition. Here, we discuss the historical advancement of cell-free systems, as well as their new applications in the rapid design of synthetic genetic circuits and components, directed evolution of biomolecules, diagnosis of infectious diseases, and synthesis of vaccines. Finally, we present our vision on the future direction of cell-free synthetic biology.

关键词: cell-free system     application    

Recent advances in cycloaddition of CO with epoxides: halogen-free catalysis and mechanistic insights

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1879-1894 doi: 10.1007/s11705-023-2354-4

摘要: The atom-economical cycloaddition of CO2 with epoxides to synthesize cyclic carbonates is a promising route for valuable utilization of CO2. Halogenide such as alkali metal halides and quaternary ammonium salt have been developed as the efficient catalysts. However, the spilled halogen causes equipment corrosion and affects the product purity. To address these concerns, the halogen-free cycloaddition of CO2 with epoxides has always been desired. In this review, we systematically discussed the halogen-free catalysis for cycloaddition of CO2 with epoxides from the mechanistic insights, aiming to promote the development of efficient halogen-free catalysts. Two types of catalysts, i.e., alternatives of halogen nucleophiles for epoxide activation, and bifunctional catalysts with Lewis acid-base sites for synergistic activation of CO2 and epoxides are summarized and emphasized. Specially, metal oxides as the potential halogen-free catalysts are highlighted due to their flexible acid-base sites for synergistic activation of CO2 and epoxides, facile preparation, and low cost.

关键词: carbon dioxide     halogen-free catalysis     cyclic carbonate     mechanistic insight    

标题 作者 时间 类型 操作

Hollow carbon spheres and their noble metal-free hybrids in catalysis

期刊论文

Recent advances on metal-free graphene-based catalysts for the production of industrial chemicals

Zhiyong Wang, Yuan Pu, Dan Wang, Jie-Xin Wang, Jian-Feng Chen

期刊论文

Metal-free, carbon-based catalysts for oxygen reduction reactions

Zhiyi Wu,Zafar Iqbal,Xianqin Wang

期刊论文

超重力环境下非金属氮掺杂石墨烯泡沫催化还原反应性能研究

王志勇, 赵志建, Jesse Baucom, 王丹, Liming Dai, 陈建峰

期刊论文

Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation

Tao Zhang, Tewodros Asefa

期刊论文

以NH3OH+/NH2NH3+作为B位阳离子的无金属六方钙钛矿含能材料

尚宇, 余志鸿, 黄瑞康, 陈劭力, 刘德轩, 陈晓娴, 张伟雄, 陈小明

期刊论文

Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

Gang WU

期刊论文

Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation

Jie Lan, Daizong Qi, Jie Song, Peng Liu, Yi Liu, Yun-Xiang Pan

期刊论文

Effects of ancillary ligands in acceptorless benzyl alcohol dehydrogenation mediated by phosphine-free

期刊论文

Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or

Xuejiao Wang, Xiang Feng, Jing Shang

期刊论文

Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free

Haiyan LI, Jing LIU

期刊论文

Metal-organic framework-based CO

Yujie Ban, Meng Zhao, Weishen Yang

期刊论文

铋基亲钠框架互穿钠金属负极实现无枝晶/高倍率钠离子电池

赵婉玉, 郭敏, 左志军, 赵晓莉, 窦湟琳, 张宜杰, 李时莹, 吴子辰, 石雅雲, 马紫峰, 杨晓伟

期刊论文

Cell-free systems in the new age of synthetic biology

Fernando Villarreal,Cheemeng Tan

期刊论文

Recent advances in cycloaddition of CO with epoxides: halogen-free catalysis and mechanistic insights

期刊论文