资源类型

期刊论文 24

年份

2023 5

2022 2

2021 3

2020 5

2018 1

2012 2

2008 2

2007 2

2006 1

2003 1

展开 ︾

关键词

IEEE 802-16e 1

QoS 1

公平 1

分层空时码 1

可见光通信;游程长度受限码;有限状态机;最小汉明距离 1

哈密尔顿图 1

多判据最小生成树问题 1

多输入多输出 1

奈奎斯特采样定理;亚奈奎斯特采样;最小欧式距离;欠定线性问题;时变维特比算法 1

拓扑控制 1

无线传感器网络 1

最小均方误差 1

最小度 1

正交频分复用 1

独立数 1

网络编码子图;最小功率代价;5G;分离架构 1

调度算法 1

迫零算法 1

遗传算法 1

展开 ︾

检索范围:

排序: 展示方式:

Tribological mechanism of carbon group nanofluids on grinding interface under minimum quantity lubrication

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0733-z

摘要: Carbon group nanofluids can further improve the friction-reducing and anti-wear properties of minimum quantity lubrication (MQL). However, the formation mechanism of lubrication films generated by carbon group nanofluids on MQL grinding interfaces is not fully revealed due to lack of sufficient evidence. Here, molecular dynamic simulations for the abrasive grain/workpiece interface were conducted under nanofluid MQL, MQL, and dry grinding conditions. Three kinds of carbon group nanoparticles, i.e., nanodiamond (ND), carbon nanotube (CNT), and graphene nanosheet (GN), were taken as representative specimens. The [BMIM]BF4 ionic liquid was used as base fluid. The materials used as workpiece and abrasive grain were the single-crystal Ni–Fe–Cr series of Ni-based alloy and single-crystal cubic boron nitride (CBN), respectively. Tangential grinding force was used to evaluate the lubrication performance under the grinding conditions. The abrasive grain/workpiece contact states under the different grinding conditions were compared to reveal the formation mechanism of the lubrication film. Investigations showed the formation of a boundary lubrication film on the abrasive grain/workpiece interface under the MQL condition, with the ionic liquid molecules absorbing in the groove-like fractures on the grain wear’s flat face. The boundary lubrication film underwent a friction-reducing effect by reducing the abrasive grain/workpiece contact area. Under the nanofluid MQL condition, the carbon group nanoparticles further enhanced the tribological performance of the MQL technique that had benefited from their corresponding tribological behaviors on the abrasive grain/workpiece interface. The behaviors involved the rolling effect of ND, the rolling and sliding effects of CNT, and the interlayer shear effect of GN. Compared with the findings under the MQL condition, the tangential grinding forces could be further reduced by 8.5%, 12.0%, and 14.1% under the diamond, CNT, and graphene nanofluid MQL conditions, respectively.

关键词: grinding     minimum quantity lubrication     carbon group nanofluid     tribological mechanism    

Estimation of the minimum effective dose of tramadol for postoperative analgesia in infants using the

null

《医学前沿(英文)》 2012年 第6卷 第3期   页码 288-295 doi: 10.1007/s11684-012-0208-4

摘要:

Tramadol is a potent analgesic. However, the analgesia efficacy of tramadol, particularly its minimum effective dose (MED), is not clear. The aim of this study is to find MED of tramadol for postoperative analgesia in infants. The continual reassessment method (CRM) was performed to find MED. Infants undergoing surgeries were included in the 3 phases of this series. In each phase, 24 participants were allocated a different tramadol dose. Pain intensity was measured by face, legs, activity, cry, consolability (FLACC) measurement at 3-hour intervals. Tramadol was considered ineffective if the FLACC score was higher than 4 in 10 at anytime. In phase 1, seven dose levels were used within the range 0.1–0.4 mg?kg-1·h-1. Phase 1 was insufficient to identify the MED, and we increased the dose to 0.4–0.8 mg?kg-1·h-1 in phase 2. Phase 2 was insufficient to identify the MED. In phase 3, local anesthetic wound infiltration was introduced, and the tramadol dose levels tested were the same as in phase 1. The successful analgesia probability of tramadol 0.4 mg?kg-1?h-1 was 82.1% (95% CI, 0.742–0.925) in phase 1. In phase 2, it was 84.7% (95% CI, 0.789–0.991) with the dose 0.8 mg?kg-1?h-1. Phase 1 and phase 2 were insufficient to identify the MED. In phase 3, the successful analgesia probability for dose 0.35 mg?kg-1?h-1was 96.7% (95% CI, 0.853–0.997).We have demonstrated that tramadol provides insufficient analgesia for surgeries considered to cause moderate-to-severe postoperative pain in infants if used as the sole analgesic, and that local anesthetic wound infiltration enhances the efficacy of tramadol.

关键词: tramadol     minimum effective dose     postoperative analgesia     infants     continual reassessment method    

Cryogenic minimum quantity lubrication machining: from mechanism to application

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 649-697 doi: 10.1007/s11465-021-0654-2

摘要: Cutting fluid plays a cooling–lubrication role in the cutting of metal materials. However, the substantial usage of cutting fluid in traditional flood machining seriously pollutes the environment and threatens the health of workers. Environmental machining technologies, such as dry cutting, minimum quantity lubrication (MQL), and cryogenic cooling technology, have been used as substitute for flood machining. However, the insufficient cooling capacity of MQL with normal-temperature compressed gas and the lack of lubricating performance of cryogenic cooling technology limit their industrial application. The technical bottleneck of mechanical–thermal damage of difficult-to-cut materials in aerospace and other fields can be solved by combining cryogenic medium and MQL. The latest progress of cryogenic minimum quantity lubrication (CMQL) technology is reviewed in this paper, and the key scientific issues in the research achievements of CMQL are clarified. First, the application forms and process characteristics of CMQL devices in turning, milling, and grinding are systematically summarized from traditional settings to innovative design. Second, the cooling–lubrication mechanism of CMQL and its influence mechanism on material hardness, cutting force, tool wear, and workpiece surface quality in cutting are extensively revealed. The effects of CMQL are systematically analyzed based on its mechanism and application form. Results show that the application effect of CMQL is better than that of cryogenic technology or MQL alone. Finally, the prospect, which provides basis and support for engineering application and development of CMQL technology, is introduced considering the limitations of CMQL.

关键词: cryogenic minimum quantity lubrication (CMQL)     cryogenic medium     processing mode     device application     mechanism     application effect    

Modeling of the minimum cutting thickness in micro cutting with consideration of the friction around

Tianfeng ZHOU, Ying WANG, Benshuai RUAN, Zhiqiang LIANG, Xibin WANG

《机械工程前沿(英文)》 2020年 第15卷 第1期   页码 81-88 doi: 10.1007/s11465-019-0561-y

摘要: Friction modeling between the tool and the workpiece plays an important role in predicting the minimum cutting thickness during TC4 micro machining and finite element method (FEM) cutting simulation. In this study, a new three-region friction modeling is proposed to illustrate the material flow mechanism around the friction zone in micro cutting; estimate the stress distributions on the rake, edge, and clearance faces of the tool; and predict the stagnation point location and the minimum cutting thickness. The friction modeling is established by determining the distribution of normal and shear stress. Then, it is applied to calculate the stagnation point location on the edge face and predict the minimum cutting thickness. The stagnation point and the minimum cutting thickness are also observed and illustrated in the FEM simulation. Micro cutting experiments are conducted to validate the accuracy of the friction and the minimum cutting thickness modeling. Comparison results show that the proposed friction model illustrates the relationship between the normal and sheer stress on the tool surface, thereby validating the modeling method of the minimum cutting thickness in micro cutting.

关键词: tool friction     minimum cutting thickness     finite element method     tool edge radius     micro cutting    

Achieving air pollutant emission reduction targets with minimum abatement costs: An enterprise-level

《环境科学与工程前沿(英文)》 2022年 第16卷 第2期 doi: 10.1007/s11783-021-1459-6

摘要:

• Quantification of efficiency and fairness of abatement allocation are optimized.

关键词: Pollutant emission reduction allocation     Emission reduction measures     Total abatement cost     Economic efficiency     Abatement space    

Identification of structural parameters and boundary conditions using a minimum number of measurement

Ali KARIMPOUR, Salam RAHMATALLA

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1331-1348 doi: 10.1007/s11709-020-0686-4

摘要: This article proposes a novel methodology that uses mathematical and numerical models of a structure to build a data set and determine crucial nodes that possess the highest sensitivity. Regression surfaces between the structural parameters and structural output features, represented by the natural frequencies of the structure and local transmissibility, are built using the numerical data set. A description of a possible experimental application is provided, where sensors are mounted at crucial nodes, and the natural frequencies and local transmissibility at each natural frequency are determined from the power spectral density and the power spectral density ratios of the sensor responses, respectively. An inverse iterative process is then applied to identify the structural parameters by matching the experimental features with the available parameters in the myriad numerical data set. Three examples are presented to demonstrate the feasibility and efficacy of the proposed methodology. The results reveal that the method was able to accurately identify the boundary coefficients and physical parameters of the Euler-Bernoulli beam as well as a highway bridge model with elastic foundations using only two measurement points. It is expected that the proposed method will have practical applications in the identification and analysis of restored structural systems with unknown parameters and boundary coefficients.

关键词: structural model validation     eigenvalue problem     response surface     inverse problems    

Nanoparticle-enhanced coolants in machining: mechanism, application, and prospects

《机械工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11465-023-0769-8

摘要: Nanoparticle-enhanced coolants (NPECs) are increasingly used in minimum quantity lubrication (MQL) machining as a green lubricant to replace conventional cutting fluids to meet the urgent need for carbon emissions and achieve sustainable manufacturing. However, the thermophysical properties of NPEC during processing remain unclear, making it difficult to provide precise guidance and selection principles for industrial applications. Therefore, this paper reviews the action mechanism, processing properties, and future development directions of NPEC. First, the laws of influence of nano-enhanced phases and base fluids on the processing performance are revealed, and the dispersion stabilization mechanism of NPEC in the preparation process is elaborated. Then, the unique molecular structure and physical properties of NPECs are combined to elucidate their unique mechanisms of heat transfer, penetration, and anti-friction effects. Furthermore, the effect of NPECs is investigated on the basis of their excellent lubricating and cooling properties by comprehensively and quantitatively evaluating the material removal characteristics during machining in turning, milling, and grinding applications. Results showed that turning of Ti‒6Al‒4V with multi-walled carbon nanotube NPECs with a volume fraction of 0.2% resulted in a 34% reduction in tool wear, an average decrease in cutting force of 28%, and a 7% decrease in surface roughness Ra, compared with the conventional flood process. Finally, research gaps and future directions for further applications of NPECs in the industry are presented.

关键词: nanoparticle-enhanced coolant     minimum quantity lubrication     biolubricant     thermophysical properties     turning     milling     grinding    

A novel power system reconfiguration for a distribution system with minimum load balancing index using

K. Sathish KUMAR, T. JAYABARATHI

《能源前沿(英文)》 2012年 第6卷 第3期   页码 260-265 doi: 10.1007/s11708-012-0196-8

摘要: In this paper, the objective of minimum load balancing index (LBI) for the 16-bus distribution system is achieved using bacterial foraging optimization algorithm (BFOA). The feeder reconfiguration problem is formulated as a non-linear optimization problem and the optimal solution is obtained using BFOA. With the proposed reconfiguration method, the radial structure of the distribution system is retained and the burden on the optimization technique is reduced. Test results are presented for the 16-bus sample network, the proposed reconfiguration method has effectively decreased the LBI, and the BFOA technique is efficient in searching for the optimal solution.

关键词: bacterial foraging optimization algorithm (BFOA)     distribution system     network reconfiguration     load balancing index (LBI)     radial network    

5G最小代价多播网络中的次优编码子图算法 None

Feng WEI, Wei-xia ZOU

《信息与电子工程前沿(英文)》 2018年 第19卷 第5期   页码 662-673 doi: 10.1631/FITEE.1700020

摘要: 为降低具有控制—数据分离架构的5G网络中多播的传输代价,本文关注无线网络中两多播共存时的功率代价最小网络编码子图形成问题。提出两个基于Steiner树的扩展次优算法:当两个具有相同吞吐量的多播组共存时,C1CPE算法通过复用拓扑中已经占用链路的方式寻找可行的最小代价方案,并采用节点涂色的方式保证网络编码方案可解码。另外,针对两多播组的源点和目的点相同的特殊情况,在C1CPE算法基础上提出E-SCTF算法。此算法精简了涂色方案,通过理论分析可知此算法复杂度比C1CPE算法低。仿真结果表明,两个算法在功率代价上都有良好表现,在密集部署下性能仍可进一步提升。

关键词: 网络编码子图;最小功率代价;5G;分离架构    

Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0720-4

摘要: Aerospace aluminum alloy is the most used structural material for rockets, aircraft, spacecraft, and space stations. The deterioration of surface integrity of dry machining and the insufficient heat transfer capacity of minimal quantity lubrication have become the bottleneck of lubrication and heat dissipation of aerospace aluminum alloy. However, the excellent thermal conductivity and tribological properties of nanofluids are expected to fill this gap. The traditional milling force models are mainly based on empirical models and finite element simulations, which are insufficient to guide industrial manufacturing. In this study, the milling force of the integral end milling cutter is deduced by force analysis of the milling cutter element and numerical simulation. The instantaneous milling force model of the integral end milling cutter is established under the condition of dry and nanofluid minimal quantity lubrication (NMQL) based on the dual mechanism of the shear effect on the rake face of the milling cutter and the plow cutting effect on the flank surface. A single factor experiment is designed to introduce NMQL and the milling feed factor into the instantaneous milling force coefficient. The average absolute errors in the prediction of milling forces for the NMQL are 13.3%, 2.3%, and 7.6% in the x-, y-, and z-direction, respectively. Compared with the milling forces obtained by dry milling, those by NMQL decrease by 21.4%, 17.7%, and 18.5% in the x-, y-, and z-direction, respectively.

关键词: milling     force     nanofluid minimum quantity lubrication     aerospace aluminum alloy     nano biological lubricant    

Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0680-8

摘要: Fiber-reinforced composites have become the preferred material in the fields of aviation and aerospace because of their high-strength performance in unit weight. The composite components are manufactured by near net-shape and only require finishing operations to achieve final dimensional and assembly tolerances. Milling and grinding arise as the preferred choices because of their precision processing. Nevertheless, given their laminated, anisotropic, and heterogeneous nature, these materials are considered difficult-to-machine. As undesirable results and challenging breakthroughs, the surface damage and integrity of these materials is a research hotspot with important engineering significance. This review summarizes an up-to-date progress of the damage formation mechanisms and suppression strategies in milling and grinding for the fiber-reinforced composites reported in the literature. First, the formation mechanisms of milling damage, including delamination, burr, and tear, are analyzed. Second, the grinding mechanisms, covering material removal mechanism, thermal mechanical behavior, surface integrity, and damage, are discussed. Third, suppression strategies are reviewed systematically from the aspects of advanced cutting tools and technologies, including ultrasonic vibration-assisted machining, cryogenic cooling, minimum quantity lubrication (MQL), and tool optimization design. Ultrasonic vibration shows the greatest advantage of restraining machining force, which can be reduced by approximately 60% compared with conventional machining. Cryogenic cooling is the most effective method to reduce temperature with a maximum reduction of approximately 60%. MQL shows its advantages in terms of reducing friction coefficient, force, temperature, and tool wear. Finally, research gaps and future exploration directions are prospected, giving researchers opportunity to deepen specific aspects and explore new area for achieving high precision surface machining of fiber-reinforced composites.

关键词: milling     grinding     fiber-reinforced composites     damage formation mechanism     delamination     material removal mechanism     surface integrity     minimum quantity lubrication    

Determining the optimum economic insulation thickness of double pipes buried in the soil for district heating systems

Fating LI, Pengfei JIE, Zhou FANG, Zhimei WEN

《能源前沿(英文)》 2021年 第15卷 第1期   页码 170-185 doi: 10.1007/s11708-020-0680-5

摘要: The insulation thickness (IT) of double pipes buried in the soil (DPBIS) for district heating (DH) systems was optimized to minimize the annual total cost of DPBIS for DH systems. An optimization model to obtain the optimum insulation thickness (OIT) and minimum annual total cost (MATC) of DPBIS for DH systems was established. The zero point theorem and fsolve function were used to solve the optimization model. Three types of heat sources, four operating strategies, three kinds of insulation materials, three buried depth (BD) values, and seven nominal pipe size (NPS) values were considered in the calculation of the OIT and MATC of DPBIS for DH systems, respectively. The optimization results for the above factors were compared. The results show that the OIT and MATC of DPBIS for DH systems can be obtained by using the optimization model. Sensitivity analysis was conducted to investigate the impact of some economic parameters, i.e., unit heating cost, insulation material price, interest rate, and insulation material lifetime, on optimization results. It is found out that the impact of sensitivity factors on the OIT and MATC of DPBIS for DH systems is different.

关键词: double pipes     optimization model     optimum insulation thickness     minimum annual total cost    

Functional tolerance theory in incremental growth design

YANG Bo, ZE Xiangbo, YANG Tao

《机械工程前沿(英文)》 2007年 第2卷 第3期   页码 336-343 doi: 10.1007/s11465-007-0059-x

摘要: The evolutionary tolerance design strategy and its characteristics are studied on the basis of automation technology in the product structure design. To guarantee a successful transformation from the functional requirement to geometry constraints between parts, and finally to dimension constraints, a functional tolerance design theory in the process of product growth design is put forward. A mathematical model with a correlated sensitivity function between cost and the tolerance is created, in which the design cost, the manufacturing cost, the usage cost, and the depreciation cost of the product are regarded as control constraints of the tolerance allocation. Considering these costs, a multifactor-cost function to express quality loss of the product is applied into the model. In the mathematical model, the minimum cost is used as the objective function; a reasonable process capability index, the assembly function, and assembly quality are taken as the constraints; and depreciation cost in the objective function is expressed as the discount rate terminology in economics. Thus, allocation of the dimension tolerance as the function and cost over the whole lifetime of the product is realized. Finally, a design example is used to demonstrate the successful application of the proposed functional tolerance theory in the incremental growth design of the product.

关键词: successful transformation     mathematical     automation technology     tolerance allocation     minimum    

Nonlinear sealing force of a seawater balance valve used in an 11000-meter manned submersible

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0726-y

摘要: Balance valve is a core component of the 11000-meter manned submersible “struggle,” and its sealing performance is crucial and challenging when the maximum pressure difference is 118 MPa. The increasing sealing force improves the sealing performance and increases the system’s energy consumption at the same time. A hybrid analytical–numerical–experimental (ANE) model is proposed to obtain the minimum sealing force, ensuring no leakage at the valve port and reducing energy consumption as much as possible. The effects of roundness error, environmental pressure, and materials on the minimum sealing force are considered in the ANE model. The basic form of minimum sealing force equations is established, and the remaining unknown coefficients of the equations are obtained by the finite element method (FEM). The accuracy of the equation is evaluated by comparing the independent FEM data to the equation data. Results of the comparison show good agreement, and the difference between the independent FEM data and equation data is within 3% when the environmental pressure is 0–118 MPa. Finally, the minimum sealing force equation is applied in a balance valve to be experimented using a deep-sea simulation device. The balance valve designed through the minimum sealing force equation is leak-free in the experiment. Thus, the minimum sealing force equation is suitable for the ultrahigh pressure balance valve and has guiding significance for evaluating the sealing performance of ultrahigh pressure balance valves.

关键词: seawater balance valve     sealing performance     hybrid ANE model     FEM     minimum sealing force equation    

Influences and mechanisms of nanofullerene on the horizontal transfer of plasmid-encoded antibiotic resistance genes between

Qingkun Ji, Caihong Zhang, Dan Li

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1287-0

摘要: Abstract • Sub-inhibitory levels of nC60 promote conjugative transfer of ARGs. • nC60 can induce ROS generation, oxidative stress and SOS response. • nC60 can increase cell membrane permeability and alter gene expression. • Results provide evidence of nC60 promoting antibiotic resistance dissemination. The spread and development of antibiotic resistance globally have led to severe public health problems. It has been shown that some non-antibiotic substances can also promote the diffusion and spread of antibiotic resistance genes (ARGs). Nanofullerene (nC60) is a type of nanomaterial widely used around the world, and some studies have discovered both the biological toxicity and environmental toxicity of nC60. In this study, cellular and molecular biology techniques were employed to investigate the influences of nC60 at sub-minimum inhibitory concentrations (sub-MICs) on the conjugation of ARGs between the E. coli strains. Compared with the control group, nC60 significantly increased the conjugation rates of ARGs by 1.32‒10.82 folds within the concentration range of 7.03‒1800 mg/L. This study further explored the mechanism of this phenomenon, finding that sub-MICs of nC60 could induce the production of reactive oxygen species (ROS), trigger SOS-response and oxidative stress, affect the expression of outer membrane proteins (OMPs) genes, increase membrane permeability, and thus promote the occurrence of conjugation. This research enriches our understanding of the environmental toxicity of nC60, raises our risk awareness toward nC60, and may promote the more rational employment of nC60 materials.

关键词: Nanofullerene     Sub-minimum inhibitory concentrations     Antibiotic resistance genes     Conjugation     Molecular biological techniques    

标题 作者 时间 类型 操作

Tribological mechanism of carbon group nanofluids on grinding interface under minimum quantity lubrication

期刊论文

Estimation of the minimum effective dose of tramadol for postoperative analgesia in infants using the

null

期刊论文

Cryogenic minimum quantity lubrication machining: from mechanism to application

期刊论文

Modeling of the minimum cutting thickness in micro cutting with consideration of the friction around

Tianfeng ZHOU, Ying WANG, Benshuai RUAN, Zhiqiang LIANG, Xibin WANG

期刊论文

Achieving air pollutant emission reduction targets with minimum abatement costs: An enterprise-level

期刊论文

Identification of structural parameters and boundary conditions using a minimum number of measurement

Ali KARIMPOUR, Salam RAHMATALLA

期刊论文

Nanoparticle-enhanced coolants in machining: mechanism, application, and prospects

期刊论文

A novel power system reconfiguration for a distribution system with minimum load balancing index using

K. Sathish KUMAR, T. JAYABARATHI

期刊论文

5G最小代价多播网络中的次优编码子图算法

Feng WEI, Wei-xia ZOU

期刊论文

Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant

期刊论文

Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies

期刊论文

Determining the optimum economic insulation thickness of double pipes buried in the soil for district heating systems

Fating LI, Pengfei JIE, Zhou FANG, Zhimei WEN

期刊论文

Functional tolerance theory in incremental growth design

YANG Bo, ZE Xiangbo, YANG Tao

期刊论文

Nonlinear sealing force of a seawater balance valve used in an 11000-meter manned submersible

期刊论文

Influences and mechanisms of nanofullerene on the horizontal transfer of plasmid-encoded antibiotic resistance genes between

Qingkun Ji, Caihong Zhang, Dan Li

期刊论文