资源类型

期刊论文 46

会议视频 1

年份

2023 6

2022 11

2021 4

2020 1

2019 2

2018 3

2017 4

2016 1

2015 2

2014 4

2013 1

2011 1

2010 1

2007 3

2003 1

展开 ︾

关键词

3

深部开采 2

&alpha 1

Key technology 1

乙醇蒸汽重整 1

二氧化碳 1

二氧化碳还原 1

产氧反应 1

催化剂活化 1

光热 1

关键技术 1

冶金 1

制氢 1

助催化剂 1

化学链 1

原位谱学 1

固体氧化物燃料电池 1

固体氧化物电解池 1

固溶体 1

展开 ︾

检索范围:

排序: 展示方式:

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 226-235 doi: 10.1007/s11705-022-2198-3

摘要: Prussian blue and its analogs are extensively investigated as a cathode for ammonium-ion batteries. However, they often suffer from poor electronic conductivity. Here, we report a Ni2Fe(CN)6/multiwalled carbon nanotube composite electrode material, which is prepared using a simple coprecipitation approach. The obtained material consists of nanoparticles with sizes 30–50 nm and the multiwalled carbon nanotube embedded in it. The existence of multiwalled carbon nanotube ensures that the Ni2Fe(CN)6/multiwalled carbon nanotube composite shows excellent electrochemical performance, achieving a discharge capacity of 55.1 mAh·g–1 at 1 C and 43.2 mAh·g–1 even at 15 C. An increase in the ammonium-ion diffusion coefficient and ionic/electron conductivity based on kinetic investigations accounts for their high performance. Furthermore, detailed ex situ characterizations demonstrate that Ni2Fe(CN)6/multiwalled carbon nanotube composite offers three advantages: negligible lattice expansion during cycling, stable structure, and the reversible redox couple. Therefore, the Ni2Fe(CN)6/multiwalled carbon nanotube composite presents a long cycling life and high rate capacity. Finally, our study reports a desirable material for ammonium-ion batteries and provides a practical approach for improving the electrochemical performance of Prussian blue and its analogs.

关键词: nickel ferrocyanides     NH4+     electrochemistry     Prussian blue     aqueous ammonium ion batteries    

Nickel-based metal−organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1493-1504 doi: 10.1007/s11705-022-2168-9

摘要: Metal−organic framework-derived materials have attracted significant attention in the applications of functional materials. In this work, the rod-like nickel-based metal−organic frameworks were first synthesized and subsequently employed as the hard templates and nickel sources to prepare the whisker-shaped nickel phyllosilicate using a facile hydrothermal technology. Then, the nickel phyllosilicate whiskers were evaluated to enhance the mechanical, thermal, flammable, and tribological properties of epoxy resin. The results show that adequate nickel phyllosilicate whiskers can disperse well in the matrix, improving the tensile strength and elastic modulus by 13.6% and 56.4%, respectively. Although the addition of nickel phyllosilicate whiskers could not obtain any UL-94 ratings, it enhanced the difficulty in burning the resulted epoxy resin nanocomposites and considerably enhanced thermal stabilities. Additionally, it was demonstrated that such nickel phyllosilicate whiskers preferred to improve the wear resistance instead of the antifriction feature. Moreover, the wear rate of epoxy resin nanocomposites was reduced significantly by 80% for pure epoxy resin by adding 1 phr whiskers. The as-prepared nickel phyllosilicate whiskers proved to be promising reinforcements in preparing of high-performance epoxy resin nanocomposites.

关键词: metal−organic framework     nickel phyllosilicate     whisker     epoxy resin     mechanical response     tribological performance     flammable property    

Tool wear mechanisms in the machining of Nickel based super-alloys: A review

Waseem AKHTAR,Jianfei SUN,Pengfei SUN,Wuyi CHEN,Zawar SALEEM

《机械工程前沿(英文)》 2014年 第9卷 第2期   页码 106-119 doi: 10.1007/s11465-014-0301-2

摘要:

Nickel based super-alloys are widely employed in aircraft engines and gas turbines due to their high temperature strength, corrosion resistance and, excellent thermal fatigue properties. Conversely, these alloys are very difficult to machine and cause rapid wear of the cutting tool, frequent tool changes are thus required resulting in low economy of the machining process. This study provides a detailed review of the tool wear mechanism in the machining of nickel based super-alloys. Typical tool wear mechanisms found by different researchers are analyzed in order to find out the most prevalent wear mechanism affecting the tool life. The review of existing works has revealed interesting findings about the tool wear mechanisms in the machining of these alloys. Adhesion wear is found to be the main phenomenon leading to the cutting tool wear in this study.

关键词: tool wear     nickel based super-alloy     wear mechanism    

Sulfidation/regeneration multicycle testing of nickel-modified ZnFe

Wei LI, Jinju GUO, Jiejie HUANG, Jiaotao ZHAO

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 435-440 doi: 10.1007/s11705-010-0506-9

摘要: A commercial metal oxide sorbent for the desulphurization of coal-derived gas requires high desulphurization reactivity, mechanical strength, ability to regenerate, and stability to endure many sulfidation-regeneration cycles. In this paper, the sulfur capacity and multiple cycles of a nickel-modified ZnFe O sorbent prepared by the sol-gel auto-combustion method were measured in a fixed-bed reactor at middle temperature of 300°C (sulfidation temperature) and 500°C (regeneration temperature). Also, the BET surface area, pore volume, average pore diameter and X-ray diffraction (XRD) patterns of the sorbent through multicycles were studied. Multicycle runs indicate that the sulfidation reactivity decreases slightly during the second cycle and keeps steady in the following cycles. The results indicate that the nickel-modified ZnFe O keeps high reactivity and structural stability in the multicycle testing of sulfidation/regeneration.

关键词: hot gas desulphurization     nickel-modified ZnFe2O4     sulfidation/regeneration    

Hierarchically porous cellulose nanofibril aerogel decorated with polypyrrole and nickel-cobalt layered

《化学科学与工程前沿(英文)》 doi: 10.1007/s11705-023-2348-2

摘要: With increasing emphasis on green chemistry, biomass-based materials have attracted increased attention regarding the development of highly efficient functional materials. Herein, a new pore-rich cellulose nanofibril aerogel is utilized as a substrate to integrate highly conductive polypyrrole and active nanoflower-like nickel-cobalt layered double hydroxide through in situ chemical polymerization and electrodeposition. This ternary composite can act as an effective self-supported electrode for the electrocatalytic oxidation of glucose. With the synergistic effect of three heterogeneous components, the electrode achieves outstanding glucose sensing performance, including a high sensitivity (851.4 µA·mmol−1·L·cm−2), a short response time (2.2 s), a wide linear range (two stages: 0.001−8.145 and 8.145−35.500 mmol·L−1), strong immunity to interference, outstanding intraelectrode and interelectrode reproducibility, a favorable toxicity resistance (Cl), and a good long-term stability (maintaining 86.0% of the original value after 30 d). These data are superior to those of some traditional glucose sensors using nonbiomass substrates. When determining the blood glucose level of a human serum, this electrode realizes a high recovery rate of 97.07%–98.89%, validating the potential for high-performance blood glucose sensing.

关键词: cellulose nanofibril     aerogel     nickel-cobalt layered double hydroxide     polypyrrole     nonenzymatic glucose sensor    

Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 484-497 doi: 10.1007/s11705-021-2074-6

摘要: The nanocomposites of flower-like nickel phyllosilicate particles incorporated into epoxy resin were fabricated via an in-situ mixing process. The flower-like nickel phyllosilicate particles were firstly synthesized using a mild self-sacrificial templating method, and the morphology and lamellar structure were examined carefully. Several properties of mechanical, thermal and tribological responses of epoxy nanocomposites were performed. It was demonstrated that adequate flower-like nickel phyllosilicate particles dispersed well in the matrix, and the nanocomposites displayed enhanced tensile strength and elastic modulus but decreased elongation at break as expected. In addition, friction coefficient and wear rate were increased first and then decreased along with the particle content, and showed the lowest values at a mass fraction of 5%. Nevertheless, the incorporated flower-like nickel phyllosilicate particles resulted in the continuously increasing thermal stability of epoxy resin (EP) nanocomposites. This study revealed the giant potential of flower-like particles in preparing high-quality EP nanocomposites.

关键词: nickel phyllosilicate     flow-like structure     mechanical property     thermal stability     tribological performance    

Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments

Bao Jiang, Dechun Su, Xiaoqing Wang, Jifang Liu, Yibing Ma

《环境科学与工程前沿(英文)》 2018年 第12卷 第2期 doi: 10.1007/s11783-017-0990-y

摘要: The phytotoxicity of added copper (Cu) and nickel (Ni) is influenced by soil properties and field aging. However, the differences in the chemical behavior between Cu and Ni are still unclear. Therefore, this study was conducted to investigate the extractability of added Cu and Ni in 6-year field experiments, as well as the link with their phytotoxicity. The results showed that the extractability of added Cu decreased by 6.63% (5.10%–7.90%), 22.5% (20.6%–23.9%), and 6.87% (0%–17.9%) on average for acidic, neutral, and alkaline soil from 1 to 6 years, although the phytotoxicity of added Cu and Ni did not change significantly from 1 to 6 years in the long term field experiment. Because of dissolution of Cu, when the pH decreased below 7.0, the extractability of Cu in alkaline soil by EDTA at pH 4.0 could not reflect the effects of aging. For Ni, the extractability decreased by 18.1% (10.1%–33.0%), 63.0% (59.2%–68.8%), and 22.0% (12.4%–31.8%) from 1 to 6 years in acidic, neutral, and alkaline soils, respectively, indicating the effects of aging on Ni were greater than on Cu. The sum of ten sequential extractions of Cu and Ni showed that added Cu was more extractable than Ni in neutral and alkaline soil, but similar in acidic soil.

关键词: Copper     Nickel     EDTA     Sequential extraction    

Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen

《化学科学与工程前沿(英文)》 2022年 第16卷 第9期   页码 1367-1376 doi: 10.1007/s11705-022-2153-3

摘要: The exploration of efficient bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction is pivotal for the development of rechargeable metal–air batteries. Transition metal phosphides are emerging as promising catalyst candidates because of their superb activity and low cost. Herein, a novel metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrid was developed by a carbothermal reduction of cobalt/nickel phosphonate hybrids with different Co/Ni molar ratios. The metal phosphonate derivation method achieved an intimately coupled interaction between metal phosphides and a heteroatom-doped carbon substrate. The resultant Co2P/Ni3P@NC-0.2 enables an impressive electrocatalytic oxygen reduction reaction activity, comparable with those of state-of-the-art Pt/C catalysts in terms of onset potential (0.88 V), 4e selectivity, methanol tolerance, and long-term durability. Moreover, remarkable oxygen evolution reaction activity was also observed in alkaline conditions. The high activity is ascribed to the N-doping, abundant accessible catalytic active sites, and the synergistic effect among the components. This work not only describes a high-efficiency electrocatalyst for both oxygen reduction reaction and oxygen evolution reaction, but also highlights the application of metal phosphonate hybrids in fabricating metal phosphides with tunable structures, which is of great significance in the energy conversion field.

关键词: metal phosphonate     cobalt/nickel phosphide     N-doped carbon     oxygen electrochemistry     Zn−air battery    

Polymerization of methyl methacrylate catalyzed by mono-/bis-salicylaldiminato nickel(II) complexes and

Jihong LU, Danfeng ZHANG, Qian CHEN, Buwei YU

《化学科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 19-25 doi: 10.1007/s11705-010-0546-1

摘要: Two types of salicylaldiminato-based nickel complexes, mono-ligated Ni(II) complexes ([O-C H - - C(H)=N-Ar]Ni(PPh )(Ph) ( ), [O-(3,5-Br )C H - -C(H)=N-Ar]Ni(PPh )(Ph) ( ), [O-(3- -Bu)C H - -C(H)=N-Ar]Ni(PPh )(Ph) ( )) and bis-ligated Ni(II) complexes ([O-(3,5-Br )C H - -C(H)=N-Ar] Ni ( ), [O-(3,5-Br )C H - -C(H)=N-2-C H (PhO)] Ni ( ), Ar=2,6-C H ( -Pr) ) were synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), mass spectrography (MS) and elemental analysis (EA). In the presence of methylaluminoxane (MAO) as cocatalyst, all the nickel complexes exhibited high activities for the polymerization of methyl methacrylate (MMA) and syndiotactic-rich poly(methyl methacrylate) (PMMA) was obtained. The complexes with less bulky substituents on salicylaldiminato framework possessed higher activities, while with the same salicylaldiminato, the mono-ligated nickel complexes showed higher catalytic activity than bis-ligated ones.

关键词: late transition metal catalyst     methyl methacrylate     polymerization     salicylaldiminato nickel complexes     methylaluminoxane     syndiotactic structure    

Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters

Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1018-1028 doi: 10.1007/s11705-020-1915-z

摘要: An ion-imprinted sorbent (IIP) was prepared by using Ni as template, 3-[2-(2-aminoethylamino) ethylamino] propyl-trimethoxysilane as functional monomer, and silica gel as carrier. The adsorption performance of IIP towards Ni was investigated. IIP showed a higher adsorption capacity than that of non-imprinted sorbent, and it also exhibited high selectivity for Ni in the presence of Cu and Zn ions. Then, IIP was used to form a dynamic membrane onto the surface of ceramic membrane for treatment of electroplating wastewater containing Ni . Compared with ceramic membrane, IIP dynamic membrane had much higher steady membrane flux, and also rejected Ni to obtain a lower concentration of Ni in the permeate fluid. Perhaps it is suitable for future practice applications.

关键词: ion-imprinted     nickel ion     dynamic membrane     adsorption    

Erratum to: Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1531-1531 doi: 10.1007/s11705-022-2241-4

我国硫酸镍产业发展趋势及对策研究

任鑫,张艳飞,邢佳韵,崔博京,王良晨,王晓

《中国工程科学》 2022年 第24卷 第3期   页码 40-48 doi: 10.15302/J-SSCAE-2022.03.005

摘要:

硫酸镍作为镍产业链中至关重要的一环,是支撑我国新能源汽车动力电池、电镀等领域发展的核心原料,其原料生产、冶炼加工、回收利用等技术发展方向和行业发展趋势都备受关注。本文梳理了我国硫酸镍产业的发展动态,总结了我国硫酸镍产量、技术等发展现状,分析了我国硫酸镍产业面临的主要问题及其发展趋势,认为我国硫酸镍发展面临的问题主要来自于原料供应紧张、碳排放强度高、回收体系不完善等。在此基础上,提出了面向2035 年的发展思路和发展目标,从注重供应体系的建立,促进多样化原料供应;促进技术创新,降低生产成本减少供应压力;加快发展再生镍行业,提高再生镍用量;加快推进我国企业国际化、产业一体化进程,提升核心竞争力等方面提出对策建议。期望以需求为导向,通过硫酸镍生产技术、原料供应、回收利用等体系的完善,促进我国硫酸镍产业持续健康发展。

关键词: 硫酸镍;红土镍矿湿法冶炼;动力电池;回收利用    

Effects of preparation methods of support on the properties of nickel catalyst for hydrogenation of m-dinitrobenzene

LIU Yingxin, WEI Zuojun, CHEN Jixiang, ZHANG Jiyan

《化学科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 287-291 doi: 10.1007/s11705-007-0052-2

摘要: Using tetraethyl orthosilicate (TEOS) as the precursor of silica, the silica aerogel and xerogel, which were used as supports of nickel-based catalysts for liquid hydrogenation of -dinitrobenzene to -phenylenediamine, were prepared by the sol-gel method combined with supercritical drying (SCD) and conventional drying, respectively. Then, a series of nickel-based catalyst samples supported on these supports were prepared by the incipient wetness impregnation method with an aqueous solution of nickel nitrate as well as lanthanum nitrate as impregnation liquids. Based on the characterization results of nitrogen adsorption-desorption (BET), X-ray diffraction (XRD), temperature programmed reduction (TPR), temperature-programmed desorption of hydrogen (H-TPD), and catalytic activity evaluation, the physico-chemical properties and catalytic performances of the catalysts were investigated. The results show that the nickel crystallites on the binary nickel catalyst using silica aerogel as support are of smaller particle size. However, compared with the sample supported on silica xerogel, the nickel catalyst supported on the silica aerogel exhibits lower activity and selectivity for the hydrogenation of -dinitrobenzene because it has a lesser amount of active sites and weaker absorption ability to reactants caused by sintering of the nickel crystallites. The addition of promoter LaO could increase the activity and selectivity of the catalysts. Among all the nickel-based catalyst samples prepared, the LaO promoted ternary nickel-based catalyst supported on silica xerogel exhibits the highest activity and selectivity for the hydrogenation of -dinitrobenzene to -phenylenediamine, which could be attributed to its highest active surface area and appropriate absorption strength to reactants. Over this promising catalyst, the conversion of -dinitrobenzene and the yield of -phenylenediamine could reach 97.0% and 93.1%, respectively, under proper reaction conditions of hydrogen pressure 2.6 MPa, temperature 373 K, and reaction time 1 h.

Oxygen-deficient MoO/NiS heterostructure grown on nickel foam as efficient and durable self-supported

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 437-448 doi: 10.1007/s11705-022-2228-1

摘要: High-performance and ultra-durable electrocatalysts are vital for hydrogen evolution reaction (HER) during water splitting. Herein, by one-pot solvothermal method, MoOx/Ni3S2 spheres comprising Ni3S2 nanoparticles inside and oxygen-deficient amorphous MoOx outside in situ grow on Ni foam (NF), to assembly the heterostructure composites of MoOx/Ni3S2/NF. By adjusting volume ratio of the solvents of ethanol to water, the optimized MoOx/Ni3S2/NF-11 exhibits the best HER performance, requiring an extremely low overpotential of 76 mV to achieve the current density of 10 mA∙cm‒2 (η10 = 76 mV) and an ultra-small Tafel slope of 46 mV∙dec‒1 in 0.5 mol∙L‒1 H2SO4. More importantly, the catalyst shows prominent high catalytic stability for HER (> 100 h). The acid-resistant MoOx wraps the inside Ni3S2/NF to ensure the high stability of the catalyst under acidic conditions. Density functional theory calculations confirm that the existing oxygen vacancy and MoOx/Ni3S2 heterostructure are both beneficial to the reduced Gibbs free energy of hydrogen adsorption (|∆GH*|) over Mo sites, which act as main active sites. The heterostructure effectively decreases the formation energy of O vacancy, leading to surface reconstruction of the catalyst, further improving HER performance. The MoOx/Ni3S2/NF is promising to serve as a highly effective and durable electrocatalyst toward HER.

关键词: molybdenum oxides     oxygen vacancies     heterostructure     electrocatalysts     hydrogen evolution reaction    

Facile route to achieve MoSe-NiSe on nickel foam as efficient dual functional electrocatalysts for overall

《能源前沿(英文)》 2022年 第16卷 第3期   页码 483-491 doi: 10.1007/s11708-022-0813-0

摘要: Since the catalytic activity of present nickel-based synthetic selenide is still to be improved, MoSe2-Ni3Se2 was synthesized on nickel foam (NF) (MoSe2-Ni3Se2/NF) by introducing a molybdenum source. After the molybdenum source was introduced, the surface of the catalyst changed from a single-phase structure to a multi-phase structure. The catalyst surface with enriched active sites and the synergistic effect of MoSe2 and Ni3Se2 together enhance the hydrogen evolution reactions (HER), the oxygen evolution reactions (OER), and electrocatalytic total water splitting activity of the catalyst. The overpotential of the MoSe2-Ni3Se2/NF electrocatalyst is only 259 mV and 395 mV at a current density of 100 mA/cm2 for HER and OER, respectively. MoSe2-Ni3Se2/NF with a two-electrode system attains a current density of 10 mA/cm2 at 1.60 V. In addition, the overpotential of HER and OER of MoSe2-Ni3Se2/NF within 80000 s and the decomposition voltage of electrocatalytic total water decomposition hardly changed, showing an extremely strong stability. The improvement of MoSe2-Ni3Se2/NF catalytic activity is attributed to the establishment of the multi-phase structure and the optimized inoculation of the multi-component and multi-interface.

关键词: three-dimensional molybdenum nanomaterials     hydrogen evolution reaction     oxygen evolution reaction     overall water splitting    

标题 作者 时间 类型 操作

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

期刊论文

Nickel-based metal−organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently

期刊论文

Tool wear mechanisms in the machining of Nickel based super-alloys: A review

Waseem AKHTAR,Jianfei SUN,Pengfei SUN,Wuyi CHEN,Zawar SALEEM

期刊论文

Sulfidation/regeneration multicycle testing of nickel-modified ZnFe

Wei LI, Jinju GUO, Jiejie HUANG, Jiaotao ZHAO

期刊论文

Hierarchically porous cellulose nanofibril aerogel decorated with polypyrrole and nickel-cobalt layered

期刊论文

Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance

期刊论文

Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments

Bao Jiang, Dechun Su, Xiaoqing Wang, Jifang Liu, Yibing Ma

期刊论文

Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen

期刊论文

Polymerization of methyl methacrylate catalyzed by mono-/bis-salicylaldiminato nickel(II) complexes and

Jihong LU, Danfeng ZHANG, Qian CHEN, Buwei YU

期刊论文

Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters

Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian

期刊论文

Erratum to: Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application

期刊论文

我国硫酸镍产业发展趋势及对策研究

任鑫,张艳飞,邢佳韵,崔博京,王良晨,王晓

期刊论文

Effects of preparation methods of support on the properties of nickel catalyst for hydrogenation of m-dinitrobenzene

LIU Yingxin, WEI Zuojun, CHEN Jixiang, ZHANG Jiyan

期刊论文

Oxygen-deficient MoO/NiS heterostructure grown on nickel foam as efficient and durable self-supported

期刊论文

Facile route to achieve MoSe-NiSe on nickel foam as efficient dual functional electrocatalysts for overall

期刊论文