资源类型

期刊论文 46

年份

2022 4

2020 2

2019 2

2018 1

2017 2

2015 3

2013 2

2011 3

2010 3

2009 8

2008 8

2007 5

2006 2

2002 1

展开 ︾

关键词

压电陶瓷 1

摩擦材料 1

超声电机 1

展开 ︾

检索范围:

排序: 展示方式:

Research on applications of piezoelectric materials in smart structures

Jinhao QIU, Hongli JI

《机械工程前沿(英文)》 2011年 第6卷 第1期   页码 99-117 doi: 10.1007/s11465-011-0212-4

摘要:

Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, some research activities on the applications of piezoelectric materials in smart structures, including semi-active vibration control based on synchronized switch damping using negative capacitance, energy harvesting using new electronic interfaces, structural health monitoring based on a new type of piezoelectric fibers with metal core, and active hysteresis control based on new modified Prandtl-Ishlinskii model at the Aeronautical Science Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics are introduced.

关键词: piezoelectric materials     vibration control     energy harvesting     structural health monitoring     piezoelectric hysteresis    

Present situation and classification of piezoelectric pump

Fang YE, Shouyin WANG, Wei CHENG, Qixiao XIA, Jianhui ZHANG,

《机械工程前沿(英文)》 2009年 第4卷 第4期   页码 420-429 doi: 10.1007/s11465-009-0052-7

摘要: According to the present classification method for a piezoelectric pump, this paper reviews the development and present situation of piezoelectric pumps in the latest 30 years and finally puts forward a new classification. A volumetric piezoelectric pump, which belongs to traditional volumetric pumps, can be divided into a piezoelectric pump with or without valves. A new valveless piezoelectric pump nowadays becomes a hot issue in scientific research. It is constructed by using no-moving-part valves, which can induce positive flow resistance and negative flow resistance different, and in which the inlet and outlet are connected all the time. New forms of piezoelectric pumps, different from traditional ones, are only at the stage of conception and principle, and no practical application has been reported.

关键词: piezoelectric pump     development and present situation     new classification method     valveless piezoelectric pump     new forms of piezoelectric pump    

Robust isogeometric topology optimization for piezoelectric actuators with uniform manufacturability

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0683-5

摘要: Piezoelectric actuators have received substantial attention among the industry and academia due to quick responses, such as high output force, high stiffness, high accuracy, and precision. However, the design of piezoelectric actuators always suffers from the emergence of several localized hinges with only one-node connection, which have difficulty satisfying manufacturing and machining requirements (from the over- or under-etching devices). The main purpose of the current paper is to propose a robust isogeometric topology optimization (RITO) method for the design of piezoelectric actuators, which can effectively remove the critical issue induced by one-node connected hinges and simultaneously maintain uniform manufacturability in the optimized topologies. In RITO, the isogeometric analysis replacing the conventional finite element method is applied to compute the unknown electro elastic fields in piezoelectric materials, which can improve numerical accuracy and then enhance iterative stability. The erode–dilate operator is introduced in topology representation to construct the eroded, intermediate, and dilated density distribution functions by non-uniform rational B-splines. Finally, the RITO formulation for the design of piezoelectric materials is developed, and several numerical examples are performed to test the effectiveness and efficiency of the proposed RITO method.

关键词: piezoelectric actuator     isogeometric topology optimization     uniform manufacturability     robust formulation     density distribution function    

Novel precision piezoelectric step rotary actuator

LIU Jianfang, YANG Zhigang, ZHAO Hongwei, CHENG Guangming

《机械工程前沿(英文)》 2007年 第2卷 第3期   页码 356-360 doi: 10.1007/s11465-007-0062-2

摘要: A novel piezoelectric (PZT) precision step rotary actuator was developed on the basis of PZT technology. It adopts the principle of bionics and works with an inside anchoring/loosening of the stator and a distortion structure of the uniformly distributed thin flexible hinge to solve problems such as ineffective anchoring/loosening, low step rotary frequency, small travel, poor resolution, low speed and unsteady output. The developed actuator is characterized by high frequency (30 Hz), high speed (380 μrad/s), large travel (>270º), high resolution (1 μrad/step), and work stability. It greatly improves the ability to drive the existing PZT step rotary actuator. The new actuator can be applied in the field of micromanipulation and precision engineering, including precision driving and positioning and optics engineering.

关键词: developed     stability     ineffective anchoring/loosening     technology     piezoelectric    

A valveless piezoelectric pump with novel flow path design of function of rectification to improve energy

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0685-3

摘要: Existing valveless piezoelectric pumps are mostly based on the flow resistance mechanism to generate unidirectional fluid pumping, resulting in inefficient energy conversion because the majority of mechanical energy is consumed in terms of parasitic loss. In this paper, a novel tube structure composed of a Y-shaped tube and a ȹ-shaped tube was proposed considering theory of jet inertia and vortex dissipation for the first time to improve energy efficiency. After verifying its feasibility through the flow field simulation, the proposed tubes were integrated into a piezo-driven chamber, and a novel valveless piezoelectric pump with the function of rectification (NVPPFR) was reported. Unlike previous pumps, the reported pump directed the reflux fluid to another flow channel different from the pumping fluid, thus improving pumping efficiency. Then, mathematical modeling was established, including the kinetic analysis of vibrator, flow loss analysis of fluid, and pumping efficiency. Eventually, experiments were designed, and results showed that NVPPFR had the function of rectification and net pumping effect. The maximum flow rate reached 6.89 mL/min, and the pumping efficiency was up to 27%. The development of NVPPFR compensated for the inefficiency of traditional valveless piezoelectric pumps, broadening the application prospect in biomedicine and biology fields.

关键词: composite tube     valveless piezoelectric pump     rectification     energy efficiency    

Boundary conditions for axisymmetric piezoelectric cylinder

Baosheng ZHAO, Di WU, Xi CHEN

《机械工程前沿(英文)》 2013年 第8卷 第4期   页码 401-408 doi: 10.1007/s11465-013-0272-8

摘要:

For axisymmetric piezoelectric cylinder, the reciprocal theorem and the axisymmetric general solution of piezoelasticity are applied in a novel way to obtain the appropriate stress and mixed boundary conditions accurate to all orders for the cylinder of general edge geometry and loadings. A decay analysis technique developed by Gregory and Wan is converted into necessary conditions on the end-data of axisymmetric piezoelectric circular cylinder, and the rapidly decaying solution is established. The prescribed end-data of the circle cylinder must satisfy these conditions in order that they could generate a decaying state within the cylinder. When stress and mixed conditions are imposed on the end of cylinder, these decaying state conditions for the case of axisymmetric deformation of piezoelectric cylinder are derived explicitly. They are then used for the correct formulation of boundary conditions for the theory solution (or the interior solution) of axisymmetric piezoelectric cylinder. The results of the present paper enable us to establish a set of correct boundary conditions, most of which are obtained for the first time.

关键词: solid and structures     the axisymmetric deformation     the piezoelectric circular cylinder     the refined theory     Bessel’s Function    

Comparison between four piezoelectric energy harvesting circuits

Jinhao Qiu, Hao Jiang, Hongli Ji, Kongjun ZHU

《机械工程前沿(英文)》 2009年 第4卷 第2期   页码 153-159 doi: 10.1007/s11465-009-0031-z

摘要: This paper investigates and compares the efficiencies of four different interfaces for vibration-based energy harvesting systems. Among those four circuits, two circuits adopt the synchronous switching technique, in which the circuit is switched synchronously with the vibration. In this study, a simple source-less trigger circuit used to control the synchronized switch is proposed and two interface circuits of energy harvesting systems are designed based on the trigger circuit. To validate the effectiveness of the proposed circuits, an experimental system was established and the power harvested by those circuits from a vibration beam was measured. Experimental results show that the two new circuits can increase the harvested power by factors 2.6 and 7, respectively, without consuming extra power in the circuits.

关键词: energy harvesting     piezoelectric materials     synchronized switching    

Performance analysis of piezoelectric bimorph generator

KAN Junwu, TANG Kehong, ZHAO Hongwei, SHAO Chenghui, ZHU Guoren

《机械工程前沿(英文)》 2008年 第3卷 第2期   页码 151-157 doi: 10.1007/s11465-008-0039-9

摘要: In this paper, the theoretical model and simulation of the performance of a piezoelectric (PZT) bimorph generator is introduced. The generator consists of two piezoelectric plates bonded on a substrate metal plate. For an effective electromechanical coupling coefficient (EECC) and the generated energy, the analytical formulae are established with the thickness ratio and the Young’s modulus ratio as variables. After giving correlative material parameters, the EECC and generated energy can be computed. The results show that there is a optimal thickness ratio for a piezoelectric bimorph generator to achieve the maximum EECC and electrical energy. The EECC and generated energy decrease with an increase of the Young’s modulus ratio. In addition, the influence of mechanical source on electrical energy generation and power output is also considered.

关键词: piezoelectric bimorph     substrate     addition     PZT     mechanical    

Spectral element modeling based structure piezoelectric impedance computation and damage identification

Zhigang GUO, Zhi SUN

《结构与土木工程前沿(英文)》 2011年 第5卷 第4期   页码 458-464 doi: 10.1007/s11709-011-0133-7

摘要: This paper presents a numerical simulation study on electromechanical impedance technique for structural damage identification. The basic principle of impedance based damage detection is structural impedance will vary with the occurrence and development of structural damage, which can be measured from electromechanical admittance curves acquired from PZT patches. Therefore, structure damage can be identified from the electromechanical admittance measurements. In this study, a model based method that can identify both location and severity of structural damage through the minimization of the deviations between structural impedance curves and numerically computed response is developed. The numerical model is set up using the spectral element method, which is promised to be of high numerical efficiency and computational accuracy in the high frequency range. An optimization procedure is then formulated to estimate the property change of structural elements from the electric admittance measurement of PZT patches. A case study on a pin-pin bar is conducted to investigate the feasibility of the proposed method. The results show that the presented method can accurately identify bar damage location and severity even when the measurements are polluted by 5% noise.

关键词: PZT     piezoelectric impedance     optimization     spectral element     damage identification    

Low crosstalk switch unit for dense piezoelectric sensor networks

Lei QIU, Shenfang YUAN,

《机械工程前沿(英文)》 2009年 第4卷 第4期   页码 401-406 doi: 10.1007/s11465-009-0047-4

摘要: Structural health monitoring (SHM), on the basis of piezoelectric (PZT) sensors and lamb wave method, is efficient in estimating the state of monitored structures. Furthermore, to monitor large-scale structures, dense piezoelectric sensor networks are required, which usually contain many piezoelectric sensor pairs called actuator-sensor channels. In that case, considering the few data acquisition channels especially in the data acquisition board with a high sampling rate and limited quantity of signal amplifiers used in an integrated computer system, a switch unit is adopted to switch to different channels. Because of the high frequency and power of the lamb wave excitation signal, there exists a crosstalk signal in the switch unit. A large crosstalk signal is mixed into the response signal so that the on/off-line signal processing task is difficult to achieve. This paper first analyzes the crosstalk signal phenomenon, describes its production mechanism, and proposes a method to reduce it. Then a 24-switch channel low crosstalk switch unit based on a digital I/O board PCI7248 produced by Adlink technology is developed. An experiment is implemented to validate it. Its low crosstalk characteristics make it promote the real application of the SHM based active lamb wave method. Finally, a general software program based on LabVIEW software platform is developed to control this switch unit.

关键词: structural health monitoring (SHM)     piezoelectric (PZT) sensor networks     switch unit     crosstalk signal    

Vibration control efficiency of piezoelectric shunt damping system

Dan WU, Zhichun YANG, Hao SUN,

《机械工程前沿(英文)》 2009年 第4卷 第4期   页码 441-446 doi: 10.1007/s11465-009-0055-4

摘要: The piezoelectric shunt damping technique based on the direct piezoelectric effect has been known as a simple, low-lost, lightweight, and easy to implement method for passive damping control of structural vibration. In this technique, a piezoelectric material is used to transform mechanical energy to electrical energy. When applying the piezoelectric shunt damping technique to passively control structural vibration, the piezoelectric materials must be bonded on or embedded in host structure where large strain is induced during vibration, thus to ensure vibrational mechanical energy to be transformed into electrical energy as much as possible. In this paper, the concept of vibration control efficiency of a piezoelectric shunt damping system is proposed and studied theoretically and experimentally. In the study, PZT patches are used as energy converter, and the vibration control efficiency is expressed by the vibration reduction rate per area of the PZT patches. Emphasis is laid on the effect of the generalized electromechanical coupling coefficient on the vibration control efficiency. Four PZT patches with different sizes are bonded on the geometrical central area of four similar clamped aluminum plates, respectively, and vibration control experiments are conducted for these plates using the R-L shunt circuit. The results indicate that the bigger the coupling coefficient , the larger the rate of vibration reduction, and hence, the higher the vibration control efficiency. It also shows that the vibration responses of the first mode of the plates bonded with different PZT patches can be reduced by about 30.5%,48.58%,85.47%, and 89.91%, respectively. It comes to a conclusion that the vibration control efficiency of the piezoelectric shunt damping system decreases with the increase of the area of the PZT patch, whereas the vibration reduction of the plate increases with the area of the PZT patch. Therefore, it is necessary to make topology optimization for the PZT patch in the vibration control utilizing the piezoelectric shunt damping technique.

关键词: piezoelectric shunt     vibration control efficiency     clamped plate     generalized electromechanical coupling coefficient    

Development and application prospects of piezoelectric precision driving technology

ZHAO Chunsheng, ZHANG Jiantao, ZHANG Jianhui, JIN Jiamei

《机械工程前沿(英文)》 2008年 第3卷 第2期   页码 119-132 doi: 10.1007/s11465-008-0034-1

摘要: With the rapid development of science and technology, microelectronics manufacturing, photonics technology, space technology, ultra-precision machining, micro-robotics, biomedical engineering and other fields urgently need the support of modern precision driving theory and technology. Modern precision driving technology can be generally divided into two parts: electromagnetic and non-electromagnetic driving technology. Electromagnetic driving technology is based on traditional technology, has a low thrust-weight ratio, and needs deceleration devices with a cumbrous system or a complex structure. Moreover, it is difficult to improve positioning accuracy with this technology type. Thus, electromagnetic driving technology is still unable to meet the requirements for the above applications. Non-electromagnetic driving technology is a new choice. As a category of non-electromagnetic driving technology, piezoelectric driving technology becomes an important branch of modern precision driving technology. High holding torque and acute response make it suitable as an accurate positioning actuator. This paper presents the development of piezoelectric precision driving technology at home and abroad and gives an in-depth analysis. Future perspectives on the technology’s applications in the following fields are described: 1) integrated circuit manufacturing technology; 2) fiber optic component manufacturing technology; 3) micro parts manipulation and assembly technology; 4) biomedical engineering; 5) aerospace technology; and 6) ultra-precision processing technology.

关键词: Electromagnetic     ultra-precision processing     technology     piezoelectric     cumbrous    

Semi-active vibration control using piezoelectric actuators in smart structures

Jinhao QIU, Hongli JI, Kongjun ZHU

《机械工程前沿(英文)》 2009年 第4卷 第3期   页码 242-251 doi: 10.1007/s11465-009-0068-z

摘要: The piezoelectric materials, as the most widely used functional materials in smart structures, have many outstanding advantages for sensors and actuators, especially in vibration control, because of their excellent mechanical-electrical coupling characteristics and frequency response characteristics. Semi-active vibration control based on state switching and pulse switching has been receiving much attention over the past decade because of several advantages. Compared with standard passive piezoelectric damping, these new semi-passive techniques offer higher robustness. Compared with active damping systems, their implementation does not require any sophisticated signal processing systems or any bulky power amplifier. In this review article, the principles of the semi-active control methods based on switched shunt circuit, including state-switched method, synchronized switch damping techniques, and active control theory-based switching techniques, and their recent developments are introduced. Moreover, the future directions of research in semi-active control are also summarized.

关键词: smart structure     semi-active method     vibration control     piezoelectric actuator    

Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning

Ruizhou WANG, Xianmin ZHANG

《机械工程前沿(英文)》 2015年 第10卷 第1期   页码 20-36 doi: 10.1007/s11465-015-0328-z

摘要:

Packaged piezoelectric ceramic actuators (PPCAs) and compliant mechanisms are attractive for nanopositioning and nanomanipulation due to their ultra-high precision. The way to create and keep a proper and steady connection between both ends of the PPCA and the compliant mechanism is an essential step to achieve such a high accuracy. The connection status affects the initial position of the terminal moving plate, the positioning accuracy and the dynamic performance of the nanopositioning platform, especially during a long-time or high-frequency positioning procedure. This paper presents a novel external preload mechanism and tests it in a 1-degree of freedom (1-DOF) compliant nanopositioning platform. The 1-DOF platform utilizes a parallelogram guiding mechanism and a parallelogram load mechanism to provide a more accurate actual input displacement and output displacement. The simulation results verify the proposed stiffness model and dynamic model of the platform. The values of the preload displacement, actual input displacement and output displacement can be measured by three capacitive sensors during the whole positioning procedure. The test results show the preload characteristics vary with different types or control modes of the PPCA. Some fitting formulas are derived to describe the preload displacement, actual input displacement and output displacement using the nominal elongation signal of the PPCA. With the identification of the preload characteristics, the actual and comprehensive output characteristics of the PPCA can be obtained by the strain gauge sensor (SGS) embedded in the PPCA.

关键词: nanopositioning     preload characteristic     packaged piezoelectric ceramic actuator     compliant mechanism    

Power performance of circular piezoelectric diaphragm generators

TANG Kehong, KAN Junwu, YANG Zhigang, CHENG Guangming, PENG Taijiang

《机械工程前沿(英文)》 2008年 第3卷 第4期   页码 434-440 doi: 10.1007/s11465-008-0069-3

摘要: Energy generation performance of a piezoelectric generator depends mainly on several elements such as the structural style, boundary conditions, geometry parameters, materials, vibration-source frequency, and external load. To obtain the optimal energy-harvesting device, the Raleigh method is used to establish the analysis model of circular piezoelectric composite diaphragms. Simply supported and clamped boundary conditions were considered. The relationships between the output power and the structural parameters of piezoelectric composite diaphragms, and the external load resistance and frequency were shown. Given the correlative material parameters and boundary conditions, the output power, using structural parameters, external load, or vibrating frequency as variables, can be calculated. Simulation results show that there are optimal structural parameters and load for a composite diaphragm to achieve the maximum output power. A piezoelectric diaphragm generator with given dimensions tends to achieve higher output power under clamped boundary conditions than that under simply supported boundary conditions.

关键词: clamped boundary     energy-harvesting     composite diaphragm     piezoelectric composite     maximum    

标题 作者 时间 类型 操作

Research on applications of piezoelectric materials in smart structures

Jinhao QIU, Hongli JI

期刊论文

Present situation and classification of piezoelectric pump

Fang YE, Shouyin WANG, Wei CHENG, Qixiao XIA, Jianhui ZHANG,

期刊论文

Robust isogeometric topology optimization for piezoelectric actuators with uniform manufacturability

期刊论文

Novel precision piezoelectric step rotary actuator

LIU Jianfang, YANG Zhigang, ZHAO Hongwei, CHENG Guangming

期刊论文

A valveless piezoelectric pump with novel flow path design of function of rectification to improve energy

期刊论文

Boundary conditions for axisymmetric piezoelectric cylinder

Baosheng ZHAO, Di WU, Xi CHEN

期刊论文

Comparison between four piezoelectric energy harvesting circuits

Jinhao Qiu, Hao Jiang, Hongli Ji, Kongjun ZHU

期刊论文

Performance analysis of piezoelectric bimorph generator

KAN Junwu, TANG Kehong, ZHAO Hongwei, SHAO Chenghui, ZHU Guoren

期刊论文

Spectral element modeling based structure piezoelectric impedance computation and damage identification

Zhigang GUO, Zhi SUN

期刊论文

Low crosstalk switch unit for dense piezoelectric sensor networks

Lei QIU, Shenfang YUAN,

期刊论文

Vibration control efficiency of piezoelectric shunt damping system

Dan WU, Zhichun YANG, Hao SUN,

期刊论文

Development and application prospects of piezoelectric precision driving technology

ZHAO Chunsheng, ZHANG Jiantao, ZHANG Jianhui, JIN Jiamei

期刊论文

Semi-active vibration control using piezoelectric actuators in smart structures

Jinhao QIU, Hongli JI, Kongjun ZHU

期刊论文

Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning

Ruizhou WANG, Xianmin ZHANG

期刊论文

Power performance of circular piezoelectric diaphragm generators

TANG Kehong, KAN Junwu, YANG Zhigang, CHENG Guangming, PENG Taijiang

期刊论文