资源类型

期刊论文 65

会议视频 3

年份

2024 4

2023 5

2022 7

2021 3

2020 4

2019 6

2018 3

2017 5

2016 2

2014 2

2013 1

2012 1

2011 1

2010 1

2008 2

2007 3

2005 1

2004 2

2003 2

2002 3

展开 ︾

关键词

增材制造 4

冶金 3

双层辉光离子渗金属 2

提取冶金 2

材料 2

植物生长调节剂 2

铜冶金 2

闪速熔炼 2

HDPE 1

Inconel 718合金 1

MnAl 1

NaOH分解 1

PP 1

Rosenthal方程 1

TA乳粉 1

TRIP钢 1

δ铁素体 1

三十烷醇 1

中国 1

展开 ︾

检索范围:

排序: 展示方式:

Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite

Omotoyosi H. FAMODIMU, Mark STANFORD, Chike F. ODUOZA, Lijuan ZHANG

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 520-527 doi: 10.1007/s11465-018-0521-y

摘要:

Laser melting of aluminium alloy—AlSi10Mg has increasingly been used to create specialised products in various industrial applications, however, research on utilising laser melting of aluminium matrix composites in replacing specialised parts have been slow on the uptake. This has been attributed to the complexity of the laser melting process, metal/ceramic feedstock for the process and the reaction of the feedstock material to the laser. Thus, an understanding of the process, material microstructure and mechanical properties is important for its adoption as a manufacturing route of aluminium metal matrix composites. The effects of several parameters of the laser melting process on the mechanical blended composite were thus investigated in this research. This included single track formations of the matrix alloy and the composite alloyed with 5% and 10% respectively for their reaction to laser melting and the fabrication of density blocks to investigate the relative density and porosity over different scan speeds. The results from these experiments were utilised in determining a process window in fabricating near-fully dense parts.

关键词: selective laser melting     additive manufacturing     mechanical alloying     powder metallurgy     aluminium metal matrix composite    

Stress–strain relationship for reactive powder concrete with recycled powder under uniaxial compression

《结构与土木工程前沿(英文)》 2024年 第18卷 第7期   页码 1015-1027 doi: 10.1007/s11709-024-1063-5

摘要: The recycled powder (RP) from construction wastes can be used to partially replace cement in the preparation of reactive powder concrete. In this paper, reactive powder concrete mixtures with RP partially replacing cement, and natural sand instead of quartz, are developed. Standard curing is used, instead of steam curing that is normally requested by standard for reactive powder concrete. The influences of RP replacement ratio (0, 10%, 20%, 30%), silica fume proportion (10%, 15%, 20%), and steel fiber proportion (0, 1%, 2%) are investigated. The effects of RP, silica fume, and steel fiber proportion on compressive strength, elastic modulus, and relative absorption energy are analyzed, and theoretical models for compressive strength, elastic modulus, and relative absorption energy are established. A constitutive model for the uniaxial compressive stress–strain relationship of reactive powder concrete with RP is developed. With the increase of RP replacement ratio from 0% to 30%, the compressive strength decreases by 42% and elastic modulus decreases by 24%.

关键词: recycled powder     reactive powder concrete     elastic modulus     relative absorbed energy     stress–strain relationship    

Digital Mine Research and Practice Based on Mining and Metallurgy System Engineering

An-lin Shao

《工程管理前沿(英文)》 2016年 第3卷 第1期   页码 67-73 doi: 10.15302/J-FEM-2016006

摘要: Iron ore is necessarily basic raw material for industrialization and urbanization and related to the industrial distribution and development programming. The lean iron ore resource in our country is high-cost and low-efficiency, which cannot meet the demand of iron and steel industry, and even endanger the safety of industrial economy. Ansteel mining has created “grade decision-based multi-system integration” mode of mining and metallurgy system engineering and realized scale and efficient development of lean iron ore on basis of the construction of digital mines. Moreover, the “wisdom mines” was proposed and had led to the transformation and upgrading of iron developments.

关键词: exploration of lean iron ore     mining and metallurgy system engineering     digital mine     wisdom mine    

Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powder

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 580-592 doi: 10.1007/s11465-021-0633-7

摘要: 3D metal printing process has attracted increasing attention in recent years due to advantages, such as flexibility and rapid prototyping. This study aims to investigate the orientation effect of electropolishing characteristics on different surfaces of 316L stainless steel fabricated by laser powder bed fusion (L-PBF), considering that the rough surface of 3D printed parts is a key factor limiting its applications in the industry. The electropolishing characteristics on the different surfaces corresponding to the building orientation in selective laser melting are studied. Experimental results show that electrolyte temperature has critical importance on the electropolishing, especially for the vertical direction to the layering plane. The finish of electropolished surfaces is affected by the defects generated during L-PBF process. Thus, the electropolished vertical surface has higher surface roughness Sa than the horizontal surface. The X-ray photoelectron spectroscopy spectra show that the electropolished horizontal surface has higher Cr/Fe element ratio than the vertical surface. The electropolished horizontal surface presents higher corrosion resistance than the vertical surface by measuring the anodic polarization curves and fitting the equivalent circuit of experimental electrochemical impedance spectroscopy.

关键词: electropolishing     laser powder bed fusion     316L stainless steel     corrosion resistance     microstructure    

2018年度化工、冶金与材料工程前沿

化工、冶金与材料工程项目组

《全球工程前沿》 2018年 第2卷 第1期   页码 55-78

Advances in polishing of internal structures on parts made by laser-based powder bed fusion

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0724-0

摘要: The internal structures of metallic products are important in realizing functional applications. Considering the manufacturing of inner structures, laser-based powder bed fusion (L-PBF) is an attractive approach because its layering principle enables the fabrication of parts with customized interior structures. However, the inferior surface quality of L-PBF components hinders its productization progress seriously. In this article, process, basic forms, and applications relevant to L-PBF internal structures are reviewed comprehensively. The causes of poor surface quality and differences in the microstructure and property of the surface features of L-PBF inner structures are presented to provide a perspective of their surface characteristics. Various polishing technologies for L-PBF components with inner structures are presented, whereas their strengths and weaknesses are summarized along with a discussion on the challenges and prospects for improving the interior surface quality of L-PBF parts.

关键词: laser-based powder bed fusion     polishing     internal structures     surface quality     surface features     post process     additive manufacturing    

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 742-753 doi: 10.1007/s11709-021-0732-x

摘要: This study investigates the use of glass fiber-reinforced polyester (GRP) pipe powder (PP) for improving the bearing capacity of sandy soils. After a series of direct share tests, the optimum PP addition for improving the bearing capacity of soils was found to be 12%. Then, using the optimum PP addition, the bearing capacity of the soil was estimated through a series of loading tests on a shallow foundation model placed in a test box. The bearing capacity of sandy soil was improved by up to 30.7%. The ratio of the depth of the PP-reinforced soil to the diameter of the foundation model (H/D) of 1.25 could sufficiently strengthen sandy soil when the optimum PP ratio was used. Microstructural analyses showed that the increase in the bearing capacity can be attributed to the chopped fibers in the PP and their multiaxial distribution in the soil. Besides improving the engineering properties of soils, using PP as an additive in soils would reduce the accumulation of the industrial waste, thus providing a twofold benefit.

关键词: shallow foundation     sandy soil     bearing capacity     soil improvement     pipe powder    

Experimental study and assessment of thermal energy storage mortar with paraffin/recycled brick powder

Luchen HAO; Jianzhuang XIAO; Wanzhi CAO; Jingting SUN

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1301-1314 doi: 10.1007/s11709-022-0883-4

摘要: Thermal energy storage recycled powder mortar (TESRM) was developed in this study by incorporating paraffin/recycled brick powder (paraffin/BP) composite phase change materials (PCM). Fourier transform infrared and thermogravimetric analysis results showed that paraffin/BP composite PCM had good chemical and thermal stability. The onset melting temperature and latent heat of the composite PCM were 46.49 °C and 30.1 J·g−1. The fresh mortar properties and hardened properties were also investigated in this study. Paraffin/BP composite PCM with replacement ratio of 0%, 10%, 20%, and 30% by weight of cement were studied. The results showed that the static and dynamic yield stresses of TESRM were 699.4% and 172.9% higher than those of normal mortar, respectively. The addition of paraffin/BP composite PCM had a positive impact on the mechanical properties of mortar at later ages, and could also reduce the dry shrinkage of mortar. The dry shrinkage of TESRM had a maximum reduction about 26.15% at 120 d. The thermal properties of TESRM were better than those of normal mortar. The thermal conductivity of TESRM was 36.3% less than that of normal mortar and the heating test results showed that TESRM had good thermal energy storage performance.

关键词: recycled powder mortar     recycled brick powder     thermal energy storage     paraffin     phase change material    

Aging properties and aging mechanism of activated waste rubber powder modified asphalt binder based on

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 625-636 doi: 10.1007/s11709-023-0938-1

摘要: The research and development of high-performance pavement materials has been intensified owing to the demand for long-life pavements. This study is performed to develop a novel pavement material using waste rubber powder, waste lubricating by-product (LBP), and asphalt. Subsequently, the aging properties and aging mechanism of activated waste rubber powder modified asphalt (ARMA) are investigated based on its rheological properties and micro-characterization. The rheological results show that, compared with waste rubber powder modified asphalt (RMA), ARMA offers a higher aging resistance and a longer fatigue life. A comparison and analysis of the rheological aging parameters of ARMA and RMA show that LBP activation diminishes the aging sensitivity of ARMA. The micro-characterization result shows that the aging of ARMA may be caused by the fact that LBP-activated waste rubber powder is more reactive and can form a dense colloidal structure with asphalt. Therefore, the evaporation loss of asphalt light components by heat and the damage to the colloidal structure by oxygen during the aging process are impeded, and the thermal-oxidative aging resistance of ARMA is improved.

关键词: rubber powder modified asphalt     aging     mechanism     rheological     characterization    

从原子结构探讨贵金属在提取冶金过程中的行为

陈景

《中国工程科学》 1999年 第1卷 第2期   页码 34-40

摘要:

从原子结构特征分析了第Ⅷ族和IB族中Fe、Co、Ni、Cu 3d贱金属元素与其余8个贵金属元素化学性质的差异,以及Ru、Rh、Pd、Ag 4d贵金属与Os、Ir、Pt、Au 5d贵金属化学性质的差异。指出横向比较时,它们的化学稳定性都是从左到右增大;纵向比较时,化学稳定性是3d≤4d<5d。以从硫化铜镍矿中提取富集贵金属为例,讨论了焙烧-还原熔炼-氧化吹炼等火法过程及电解富集、阳极泥硫酸化处理、湿法氯化、加压氧化、选择性还原等湿法过程中贵金属的行为。

关键词: 原子结构     贵金属     提取冶金    

Global warming potential associated with Irish milk powder production

William Finnegan, Jamie Goggins, Aksana Chyzheuskaya, Xinmin Zhan

《环境科学与工程前沿(英文)》 2017年 第11卷 第3期 doi: 10.1007/s11783-017-0949-z

摘要: Climate change is an ever growing issue and a major concern worldwide. Both producers and processors need to address the issue now by reducing their carbon footprint. Additionally, if Ireland is to meet their climate and energy targets, as outlined in Food Harvest 2020, which outlines a range of objectives for the Irish agricultural sector, the efficient use of resources and fuels within the industry will need to be increased. In Ireland, agriculture accounts for 29.2% of the total greenhouse gas emissions (58.5 million tonnes CO eq). Therefore, in this paper, a single agri-food product, milk powder, is examined in order to estimate the global warming potential (GWP) associated with its manufacture using life cycle assessment. A cradle-to-processing factory gate analysis, which includes raw milk production, raw milk transportation to the processing factory, its processing into each product and product packaging, is assessed in this study using data collected circa 2013. The factories surveyed processed approximately 24% of the total raw milk processed in the Republic of Ireland in 2013, which was 5.83 billion liters. The average total GWP associated with the manufacture of milk powder is 9.731 kg CO eq·kg milk powder, which has a standard deviation of 2.26 kg CO eq·kg milk powder, for the life cycle stages analyzed in this study. The most significant contributor to GWP is raw milk production (84%), followed by dairy processing (14%), with the remainder of the life cycle stages contributing approximately 2%.

关键词: Dairy     Global warming potential     Ireland     Life cycle assessment     Milk powder     Milk production    

Experimental study on shear behavior of prestressed reactive powder concrete I-girders

Hui ZHENG, Zhi FANG, Bin CHEN

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 618-627 doi: 10.1007/s11709-018-0500-8

摘要: As a new generation of concrete, RPC(Reactive Powder Concrete) has attracted great research attention for its ultra-high strength and high durability. In the present paper, experimental results from tests on eight prestressed RPC I-section girders failing in shear are reported herein. The beams with RPC of 120 MPa in compression were designed to assess the ability to carry shear stress in thin webbed prestressed beams with stirrups. The test variables were the level of prestressing, shear span-depth ratio ( / ) and stirrup ratio. Shear deformation, shear capacity and crack pattern were experimentally investigated in detail. With regard to the shear resistance of the test beams, the predictions from three standards (AFGC, JSCE and SIA) on the design of UHPC structures were compared with the experimental result suggesting that the experimental strength is almost always higher than predicted. RPC, as a new concrete, was different from normal concrete and fiber reinforced concrete. Further study should be needed to develop an analytical method and computation model for shear strength of RPC beams.

关键词: prestressed concrete     RPC(Reactive Powder Concrete)     concrete beams     shear strength     experimental study    

世界钽粉生产工艺的发展

何季麟

《中国工程科学》 2001年 第3卷 第12期   页码 85-89

摘要:

论述了国内外电容器级高压钽粉、中压钽粉、高比容钽粉的生产工艺发展过程。在钽粉生产工艺发展过程中,各种先进的装备被应用,各钽粉生产厂家围绕着钽粉比容的提高,杂质含量的降低,物理性能的优化等综合性能的改善,不断开发出新工艺、新技术,使钽粉适应并推动着钽电容器的发展。

关键词: 钽粉     钽电容器     比容     氟钽酸钾钠还原    

of CoCrFeMnNi high-entropy alloy from elemental feedstock toward high-throughput synthesis via laser powder

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0727-x

摘要: High-entropy alloys (HEAs) are considered alternatives to traditional structural materials because of their superior mechanical, physical, and chemical properties. However, alloy composition combinations are too numerous to explore. Finding a rapid synthesis method to accelerate the development of HEA bulks is imperative. Existing in situ synthesis methods based on additive manufacturing are insufficient for efficiently controlling the uniformity and accuracy of components. In this work, laser powder bed fusion (L-PBF) is adopted for the in situ synthesis of equiatomic CoCrFeMnNi HEA from elemental powder mixtures. High composition accuracy is achieved in parallel with ensuring internal density. The L-PBF-based process parameters are optimized; and two different methods, namely, a multi-melting process and homogenization heat treatment, are adopted to address the problem of incompletely melted Cr particles in the single-melted samples. X-ray diffraction indicates that HEA microstructure can be obtained from elemental powders via L-PBF. In the triple-melted samples, a strong crystallographic texture can be observed through electron backscatter diffraction, with a maximum polar density of 9.92 and a high ultimate tensile strength (UTS) of (735.3 ± 14.1) MPa. The homogenization heat-treated samples appear more like coarse equiaxed grains, with a UTS of (650.8 ± 16.1) MPa and an elongation of (40.2% ± 1.3%). Cellular substructures are also observed in the triple-melted samples, but not in the homogenization heat-treated samples. The differences in mechanical properties primarily originate from the changes in strengthening mechanism. The even and flat fractographic morphologies of the homogenization heat-treated samples represent a more uniform internal microstructure that is different from the complex morphologies of the triple-melted samples. Relative to the multi-melted samples, the homogenization heat-treated samples exhibit better processability, with a smaller composition deviation, i.e., ≤ 0.32 at.%. The two methods presented in this study are expected to have considerable potential for developing HEAs with high composition accuracy and composition flexibility.

关键词: laser powder bed fusion (L-PBF)     in situ alloying     high-entropy alloys     heat treatment     rapid synthesis    

Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic

Majid Peyravi

《化学科学与工程前沿(英文)》 2020年 第14卷 第4期   页码 673-687 doi: 10.1007/s11705-019-1800-9

摘要: Adsorptive polyethesulfone (PES) membranes were prepared by intercalation of powder activated carbon (PAC) with and without functionalization. Accordingly, PAC was aminated with 1,5-diamino-2-methylpentane, and the physicochemical properties of the functionalized PAC were analyzed. Intercalation of PAC within the PES scaffold changed the porosity and mean pore size of the aminated membrane (AC-NH ) from 52.6% to 92.5% and from 22.6 nm to 3.5 nm, respectively. The effect of temperature on the performance of the modified membranes was monitored by the flux and chemical oxygen demand (COD) removal of leachate. At ambient temperature, the COD removal of the neat, AC-containing, and AC-NH membranes was 47%, 52%, and 58.5%, respectively. A similar increment was obtained for the membrane flux, which was due to the synergistic effect of the high porosity and large number of hydrophilic functional groups. The experimental leachate adsorption data were analyzed by Langmuir, Freundlich, and Dubinin- Radushkevich isotherm models. For all membranes, the significant thermodynamic parameters ( , , and ) were calculated and compared. The isosteric heat of adsorption was lower than 80 kJ∙mol , indicating that the interaction between the membranes and the leachate is mainly physical, involving weak van der Waals forces.

关键词: amine functionality     nanoporous membrane     adsorption isotherm     thermodynamic parameters     landfill leachate    

标题 作者 时间 类型 操作

Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite

Omotoyosi H. FAMODIMU, Mark STANFORD, Chike F. ODUOZA, Lijuan ZHANG

期刊论文

Stress–strain relationship for reactive powder concrete with recycled powder under uniaxial compression

期刊论文

Digital Mine Research and Practice Based on Mining and Metallurgy System Engineering

An-lin Shao

期刊论文

Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powder

期刊论文

2018年度化工、冶金与材料工程前沿

化工、冶金与材料工程项目组

期刊论文

Advances in polishing of internal structures on parts made by laser-based powder bed fusion

期刊论文

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

期刊论文

Experimental study and assessment of thermal energy storage mortar with paraffin/recycled brick powder

Luchen HAO; Jianzhuang XIAO; Wanzhi CAO; Jingting SUN

期刊论文

Aging properties and aging mechanism of activated waste rubber powder modified asphalt binder based on

期刊论文

从原子结构探讨贵金属在提取冶金过程中的行为

陈景

期刊论文

Global warming potential associated with Irish milk powder production

William Finnegan, Jamie Goggins, Aksana Chyzheuskaya, Xinmin Zhan

期刊论文

Experimental study on shear behavior of prestressed reactive powder concrete I-girders

Hui ZHENG, Zhi FANG, Bin CHEN

期刊论文

世界钽粉生产工艺的发展

何季麟

期刊论文

of CoCrFeMnNi high-entropy alloy from elemental feedstock toward high-throughput synthesis via laser powder

期刊论文

Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic

Majid Peyravi

期刊论文