资源类型

期刊论文 990

会议视频 8

年份

2023 48

2022 90

2021 73

2020 75

2019 52

2018 43

2017 47

2016 44

2015 54

2014 44

2013 41

2012 40

2011 34

2010 47

2009 46

2008 40

2007 38

2006 27

2005 26

2004 20

展开 ︾

关键词

数学模型 13

模型试验 9

数值模拟 8

模型 7

不确定性 5

COVID-19 4

GM(1 3

计算机模拟 3

1)模型 2

DX桩 2

D区 2

Preissmann格式 2

SARS 2

TRIZ 2

Weibull分布 2

k-ε模型 2

不确定性评估 2

临震信号 2

云模型 2

展开 ︾

检索范围:

排序: 展示方式:

Multivariable regression model for Fox depth correction factor

Ravi Kant MITTAL, Sanket RAWAT, Piyush BANSAL

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 103-109 doi: 10.1007/s11709-018-0474-6

摘要: This paper presents a simple and efficient equation for calculating the Fox depth correction factor used in computation of settlement reduction due to foundation embedment. Classical solution of Boussinesq theory was used originally to develop the Fox depth correction factor equations which were rather complex in nature. The equations were later simplified in the form of graphs and tables and referred in various international code of practices and standard texts for an unsophisticated and quick analysis. However, these tables and graphs provide the factor only for limited values of the input variables and hence again complicates the process of automation of analysis. Therefore, this paper presents a non-linear regression model for the analysis of effect of embedment developed using “IBM Statistical Package for the Social Sciences” software. Through multiple iterations, the value of coefficient of determination is found to reach 0.987. The equation is straightforward, competent and easy to use for both manual and automated calculation of the Fox depth correction factor for wide range of input values. Using the developed equation, parametric study is also conducted in the later part of the paper to analyse the extent of effect of a particular variable on the Fox depth factor.

关键词: settlement     embedment     Fox depth correction factor     regression     multivariable    

Multiple regression models for energy consumption of office buildings in different climates in China

Siyu ZHOU, Neng ZHU

《能源前沿(英文)》 2013年 第7卷 第1期   页码 103-110 doi: 10.1007/s11708-012-0220-z

摘要: The energy consumption of office buildings in China has been growing significantly in recent years. Obviously, there are significant relationships between building envelope and the energy consumption of office buildings. The 8 key building envelope influencing factors were found in this paper to evaluate their effects on the energy consumption of the air-conditioning system. The typical combinations of the key influencing factors were performed in Trnsy simulation. Then on the basis of the simulated results, the multiple regression models were developed respectively for the four climates of China—hot summer and warm winter, hot summer and cold winter, cold, and severely cold. According to the analysis of regression coefficients, the appropriate building envelope design schemes were discussed in different climates. At last, the regression model evaluations consisting of the simulation evaluations and the actual case evaluations were performed to verify the feasibility and accuracy of the regression models. The error rates are within±5% in the simulation evaluations and within±15% in the actual case evaluations. It is believed that the regression models developed in this paper can be used to estimate the energy consumption of office buildings in different climates when various building envelope designs are considered.

关键词: regression model     energy consumption     building envelope     office building     different climates    

Modeling oblique load carrying capacity of batter pile groups using neural network, random forest regressionand M5 model tree

Tanvi SINGH, Mahesh PAL, V. K. ARORA

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 674-685 doi: 10.1007/s11709-018-0505-3

摘要: M5 model tree, random forest regression (RF) and neural network (NN) based modelling approaches were used to predict oblique load carrying capacity of batter pile groups using 247 laboratory experiments with smooth and rough pile groups. Pile length ( ), angle of oblique load ( ), sand density ( ), number of batter piles ( ), and number of vertical piles ( ) as input and oblique load ( ) as output was used. Results suggest improved performance by RF regression for both pile groups. M5 model tree provides simple linear relation which can be used for the prediction of oblique load for field data also. Model developed using RF regression approach with smooth pile group data was found to be in good agreement for rough piles data. NN based approach was found performing equally well with both smooth and rough piles. Sensitivity analysis using all three modelling approaches suggest angle of oblique load ( ) and number of batter pile ( ) affect the oblique load capacity for both smooth and rough pile groups.

关键词: batter piles     oblique load test     neural network     M5 model tree     random forest regression     ANOVA    

Presentation of regression analysis, GP and GMDH models to predict the pedestrian density in various

Iraj BARGEGOL; Seyed Mohsen HOSSEINIAN; Vahid NAJAFI MOGHADDAM GILANI; Mohammad NIKOOKAR; Alireza OROUEI

《结构与土木工程前沿(英文)》 2022年 第16卷 第2期   页码 250-265 doi: 10.1007/s11709-021-0785-x

摘要: In this study, the relationship between space mean speed (SMS), flow rate and density of pedestrians was investigated in different pedestrian facilities, including 1 walkway, 2 sidewalks, 2 signalized crosswalks and 2 mid-block crosswalks. First, statistical analysis was performed to investigate the normality of data and correlation of variables. Regression analysis was then applied to determine the relationship between SMS, flow rate, and density of pedestrians. Finally, two prediction models of density were obtained using genetic programming (GP) and group method of data handling (GMDH) models, and k-fold and holdout cross-validation methods were used to evaluate the models. By the use of regression analysis, the mathematical relationships between variables in all facilities were calculated and plotted, and the best relationships were observed in flow rate-density diagrams. Results also indicated that GP had a higher R2 than GMDH in the prediction of pedestrian density in terms of flow rate and SMS, suggesting that GP was better able to model SMS and pedestrian density. Moreover, the application of k-fold cross-validation method in the models led to better performances compared to the holdout cross-validation method, which shows that the prediction models using k-fold were more reliable. Finally, density relationships in all facilities were obtained in terms of SMS and flow rate.

关键词: pedestrian density     regression analysis     GP model     GMDH model    

Development of machine learning multi-city model for municipal solid waste generation prediction

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1551-6

摘要:

● A database of municipal solid waste (MSW) generation in China was established.

关键词: Municipal solid waste     Machine learning     Multi-cities     Gradient boost regression tree    

Prediction of cutting force in turning of UD-GFRP using mathematical model and simulated annealing

Meenu GUPTA, Surinder Kumar GILL

《机械工程前沿(英文)》 2012年 第7卷 第4期   页码 417-426 doi: 10.1007/s11465-012-0343-2

摘要:

Glass fiber reinforced plastics (GFRPs) composite is considered to be an alternative to heavy exortic materials. According to the need for accurate machining of composites has increased enormously. During machining, the obtaining cutting force is an important aspect. The present investigation deals with the study and development of a cutting force prediction model for the machining of unidirectional glass fiber reinforced plastics (UD-GFRP) composite using regression modeling and optimization by simulated annealing. The process parameters considered include cutting speed, feed rate and depth of cut. The predicted values radial cutting force model is compared with the experimental values. The results of prediction are quite close with the experimental values. The influences of different parameters in machining of UD-GFRP composite have been analyzed.

关键词: UD-GFRP     ANOVA     radial cutting force     PCD tool     Taguchi method     regression analysis     simulated annealing     multi objective techniques    

Dynamic response surface methodology using Lasso regression for organic pharmaceutical synthesis

《化学科学与工程前沿(英文)》 2022年 第16卷 第2期   页码 221-236 doi: 10.1007/s11705-021-2061-y

摘要: To study the dynamic behavior of a process, time-resolved data are collected at different time instants during each of a series of experiments, which are usually designed with the design of experiments or the design of dynamic experiments methodologies. For utilizing such time-resolved data to model the dynamic behavior, dynamic response surface methodology (DRSM), a data-driven modeling method, has been proposed. Two approaches can be adopted in the estimation of the model parameters: stepwise regression, used in several of previous publications, and Lasso regression, which is newly incorporated in this paper for the estimation of DRSM models. Here, we show that both approaches yield similarly accurate models, while the computational time of Lasso is on average two magnitude smaller. Two case studies are performed to show the advantages of the proposed method. In the first case study, where the concentrations of different species are modeled directly, DRSM method provides more accurate models compared to the models in the literature. The second case study, where the reaction extents are modeled instead of the species concentrations, illustrates the versatility of the DRSM methodology. Therefore, DRSM with Lasso regression can provide faster and more accurate data-driven models for a variety of organic synthesis datasets.

关键词: data-driven modeling     pharmaceutical organic synthesis     Lasso regression     dynamic response surface methodology    

Interaction behavior and load sharing pattern of piled raft using nonlinear regression and LM algorithm-based

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1181-1198 doi: 10.1007/s11709-021-0744-6

摘要: In the recent era, piled raft foundation (PRF) has been considered an emergent technology for offshore and onshore structures. In previous studies, there is a lack of illustration regarding the load sharing and interaction behavior which are considered the main intents in the present study. Finite element (FE) models are prepared with various design variables in a double-layer soil system, and the load sharing and interaction factors of piled rafts are estimated. The obtained results are then checked statistically with nonlinear multiple regression (NMR) and artificial neural network (ANN) modeling, and some prediction models are proposed. ANN models are prepared with Levenberg–Marquardt (LM) algorithm for load sharing and interaction factors through backpropagation technique. The factor of safety (FS) of PRF is also estimated using the proposed NMR and ANN models, which can be used for developing the design strategy of PRF.

关键词: interaction     load sharing ratio     piled raft     nonlinear regression     artificial neural network    

An innovative model for predicting the displacement and rotation of column-tree moment connection under

Mohammad Ali NAGHSH, Aydin SHISHEGARAN, Behnam KARAMI, Timon RABCZUK, Arshia SHISHEGARAN, Hamed TAGHAVIZADEH, Mehdi MORADI

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 194-212 doi: 10.1007/s11709-020-0688-2

摘要: In this study, we carried out nonlinear finite element simulations to predict the performance of a column-tree moment connection (CTMC) under fire and static loads. We also conducted a detailed parameter study based on five input variables, including the applied temperature, number of flange bolts, number of web bolts, length of the beam, and applied static loads. The first variable is changed among seven levels, whereas the other variables are changed among three levels. Employing the Taguchi method for variables 2–5 and their levels, 9 samples were designed for the parameter study, where each sample was exposed to 7 different temperatures yielding 63 outputs. The related variables for each output are imported for the training and testing of different surrogate models. These surrogate models include a multiple linear regression (MLR), multiple Ln equation regression (MLnER), an adaptive network-based fuzzy inference system (ANFIS), and gene expression programming (GEP). 44 samples were used for training randomly while the remaining samples were employed for testing. We show that GEP outperforms MLR, MLnER, and ANFIS. The results indicate that the rotation and deflection of the CTMC depend on the temperature. In addition, the fire resistance increases with a decrease in the beam length; thus, a shorter beam can increase the fire resistance of the building. The numbers of flanges and web bolts slightly affect the rotation and displacement of the CTMCs at temperatures of above 400°C.

关键词: column-tree moment connection     Finite element model     parametric study     fire     regression models     gene expression programming    

Water quality prediction of copper-molybdenum mining-beneficiation wastewater based on the PSO-SVR model

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1698-9

摘要:

● Data acquisition and pre-processing for wastewater treatment were summarized.

关键词: Chemical oxygen demand     Mining-beneficiation wastewater treatment     Particle swarm optimization     Support vector regression     Artificial neural network    

of driver-response relationships: identifying factors using a novel framework integrating quantile regression

《环境科学与工程前沿(英文)》 2023年 第17卷 第6期 doi: 10.1007/s11783-023-1676-2

摘要:

● A novel framework integrating quantile regression with machine learning is proposed.

关键词: Driver-response     Upper boundary of relationship     Interpretable machine learning     Quantile regression     Total phosphorus     Chlorophyll a    

compressive strength of soil-RAP blend stabilized with Portland cement using multivariate adaptive regression

Ali Reza GHANIZADEH, Morteza RAHROVAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 787-799 doi: 10.1007/s11709-019-0516-8

摘要: The recycled layer in full-depth reclamation (FDR) method is a mixture of coarse aggregates and reclaimed asphalt pavement (RAP) which is stabilized by a stabilizer agent. For design and quality control of the final product in FDR method, the unconfined compressive strength of stabilized material should be known. This paper aims to develop a mathematical model for predicting the unconfined compressive strength (UCS) of soil-RAP blend stabilized with Portland cement based on multivariate adaptive regression spline (MARS). To this end, two different aggregate materials were mixed with different percentages of RAP and then stabilized by different percentages of Portland cement. For training and testing of MARS model, total of 64 experimental UCS data were employed. Predictors or independent variables in the developed model are percentage of RAP, percentage of cement, optimum moisture content, percent passing of #200 sieve, and curing time. The results demonstrate that MARS has a great ability for prediction of the UCS in case of soil-RAP blend stabilized with Portland cement ( is more than 0.97). Sensitivity analysis of the proposed model showed that the cement, optimum moisture content, and percent passing of #200 sieve are the most influential parameters on the UCS of FDR layer.

关键词: full-depth reclamation     soil-reclaimed asphalt pavement blend     Portland cement     unconfined compressive strength     multivariate adaptive regression spline    

Determination of effective stress parameter of unsaturated soils: A Gaussian process regression approach

Pijush Samui, Jagan J

《结构与土木工程前沿(英文)》 2013年 第7卷 第2期   页码 133-136 doi: 10.1007/s11709-013-0202-1

摘要: This article examines the capability of Gaussian process regression (GPR) for prediction of effective stress parameter ( ) of unsaturated soil. GPR method proceeds by parameterising a covariance function, and then infers the parameters given the data set. Input variables of GPR are net confining pressure ( ), saturated volumetric water content ( ), residual water content ( ), bubbling pressure ( ), suction ( ) and fitting parameter ( ). A comparative study has been carried out between the developed GPR and Artificial Neural Network (ANN) models. A sensitivity analysis has been done to determine the effect of each input parameter on . The developed GPR gives the variance of predicted . The results show that the developed GPR is reliable model for prediction of of unsaturated soil.

关键词: unsaturated soil     effective stress parameter     Gaussian process regression (GPR)     artificial neural network (ANN)     variance    

Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive

Faezehossadat KHADEMI,Mahmoud AKBARI,Sayed Mohammadmehdi JAMAL,Mehdi NIKOO

《结构与土木工程前沿(英文)》 2017年 第11卷 第1期   页码 90-99 doi: 10.1007/s11709-016-0363-9

摘要: Evaluating the in situ concrete compressive strength by means of cores cut from hardened concrete is acknowledged as the most ordinary method, however, it is very difficult to predict the compressive strength of concrete since it is affected by many factors such as different mix designs, methods of mixing, curing conditions, compaction, etc. In this paper, considering the experimental results, three different models of multiple linear regression model (MLR), artificial neural network (ANN), and adaptive neuro-fuzzy inference system (ANFIS) are established, trained, and tested within the Matlab programming environment for predicting the 28 days compressive strength of concrete with 173 different mix designs. Finally, these three models are compared with each other and resulted in the fact that ANN and ANFIS models enables us to reliably evaluate the compressive strength of concrete with different mix designs, however, multiple linear regression model is not feasible enough in this area because of nonlinear relationship between the concrete mix parameters. Finally, the sensitivity analysis (SA) for two different sets of parameters on the concrete compressive strength prediction are carried out.

关键词: concrete     28 days compressive strength     multiple linear regression     artificial neural network     ANFIS     sensitivity analysis (SA)    

SPT based determination of undrained shear strength: Regression models and machine learning

Walid Khalid MBARAK, Esma Nur CINICIOGLU, Ozer CINICIOGLU

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 185-198 doi: 10.1007/s11709-019-0591-x

摘要: The purpose of this study is the accurate prediction of undrained shear strength using Standard Penetration Test results and soil consistency indices, such as water content and Atterberg limits. With this study, along with the conventional methods of simple and multiple linear regression models, three machine learning algorithms, random forest, gradient boosting and stacked models, are developed for prediction of undrained shear strength. These models are employed on a relatively large data set from different projects around Turkey covering 230 observations. As an improvement over the available studies in literature, this study utilizes correct statistical analyses techniques on a relatively large database, such as using a train/test split on the data set to avoid overfitting of the developed models. Furthermore, the validity and consistency of the prediction results are ensured with the correct use of statistical measures like -value and cross-validation which were missing in previous studies. To compare the performances of the models developed in this study with the prior ones existing in literature, all models were applied on the test data set and their performances are evaluated in terms of the resulting root mean squared error ( ) values and coefficient of determination ( ). Accordingly, the models developed in this study demonstrate superior prediction capabilities compared to all of the prior studies. Moreover, to facilitate the use of machine learning algorithms for prediction purposes, entire source code prepared for this study and the collected data set are provided as supplements of this study.

关键词: undrained shear strength     linear regression     random forest     gradient boosting     machine learning     standard penetration test    

标题 作者 时间 类型 操作

Multivariable regression model for Fox depth correction factor

Ravi Kant MITTAL, Sanket RAWAT, Piyush BANSAL

期刊论文

Multiple regression models for energy consumption of office buildings in different climates in China

Siyu ZHOU, Neng ZHU

期刊论文

Modeling oblique load carrying capacity of batter pile groups using neural network, random forest regressionand M5 model tree

Tanvi SINGH, Mahesh PAL, V. K. ARORA

期刊论文

Presentation of regression analysis, GP and GMDH models to predict the pedestrian density in various

Iraj BARGEGOL; Seyed Mohsen HOSSEINIAN; Vahid NAJAFI MOGHADDAM GILANI; Mohammad NIKOOKAR; Alireza OROUEI

期刊论文

Development of machine learning multi-city model for municipal solid waste generation prediction

期刊论文

Prediction of cutting force in turning of UD-GFRP using mathematical model and simulated annealing

Meenu GUPTA, Surinder Kumar GILL

期刊论文

Dynamic response surface methodology using Lasso regression for organic pharmaceutical synthesis

期刊论文

Interaction behavior and load sharing pattern of piled raft using nonlinear regression and LM algorithm-based

期刊论文

An innovative model for predicting the displacement and rotation of column-tree moment connection under

Mohammad Ali NAGHSH, Aydin SHISHEGARAN, Behnam KARAMI, Timon RABCZUK, Arshia SHISHEGARAN, Hamed TAGHAVIZADEH, Mehdi MORADI

期刊论文

Water quality prediction of copper-molybdenum mining-beneficiation wastewater based on the PSO-SVR model

期刊论文

of driver-response relationships: identifying factors using a novel framework integrating quantile regression

期刊论文

compressive strength of soil-RAP blend stabilized with Portland cement using multivariate adaptive regression

Ali Reza GHANIZADEH, Morteza RAHROVAN

期刊论文

Determination of effective stress parameter of unsaturated soils: A Gaussian process regression approach

Pijush Samui, Jagan J

期刊论文

Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive

Faezehossadat KHADEMI,Mahmoud AKBARI,Sayed Mohammadmehdi JAMAL,Mehdi NIKOO

期刊论文

SPT based determination of undrained shear strength: Regression models and machine learning

Walid Khalid MBARAK, Esma Nur CINICIOGLU, Ozer CINICIOGLU

期刊论文